zoukankan      html  css  js  c++  java
  • 快速排序

    快速排序(Quick Sort)使用分治法策略。
    它的基本思想是:选择一个基准数,通过一趟排序将要排序的数据分割成独立的两部分;其中一部分的所有数据都比另外一部分的所有数据都要小。然后,再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

    快速排序流程:
    (1) 从数列中挑出一个基准值。
    (2) 将所有比基准值小的摆放在基准前面,所有比基准值大的摆在基准的后面(相同的数可以到任一边);在这个分区退出之后,该基准就处于数列的中间位置。
    (3) 递归地把"基准值前面的子数列"和"基准值后面的子数列"进行排序。

    下面以数列a={30,40,60,10,20,50}为例,演示它的快速排序过程(如下图)。

    上图只是给出了第1趟快速排序的流程。在第1趟中,设置x=a[i],即x=30。
    (01) 从"右 --> 左"查找小于x的数:找到满足条件的数a[j]=20,此时j=4;然后将a[j]赋值a[i],此时i=0;接着从左往右遍历。
    (02) 从"左 --> 右"查找大于x的数:找到满足条件的数a[i]=40,此时i=1;然后将a[i]赋值a[j],此时j=4;接着从右往左遍历。
    (03) 从"右 --> 左"查找小于x的数:找到满足条件的数a[j]=10,此时j=3;然后将a[j]赋值a[i],此时i=1;接着从左往右遍历。
    (04) 从"左 --> 右"查找大于x的数:找到满足条件的数a[i]=60,此时i=2;然后将a[i]赋值a[j],此时j=3;接着从右往左遍历。
    (05) 从"右 --> 左"查找小于x的数:没有找到满足条件的数。当i>=j时,停止查找;然后将x赋值给a[i]。此趟遍历结束!

    按照同样的方法,对子数列进行递归遍历。最后得到有序数组!

    快速排序的时间复杂度和稳定性

    快速排序稳定性
    快速排序是不稳定的算法,它不满足稳定算法的定义。
    算法稳定性 -- 假设在数列中存在a[i]=a[j],若在排序之前,a[i]在a[j]前面;并且排序之后,a[i]仍然在a[j]前面。则这个排序算法是稳定的!

    快速排序时间复杂度
    快速排序的时间复杂度在最坏情况下是O(N2),平均的时间复杂度是O(N*lgN)。
    这句话很好理解:假设被排序的数列中有N个数。遍历一次的时间复杂度是O(N),需要遍历多少次呢?至少lg(N+1)次,最多N次。
    (01) 为什么最少是lg(N+1)次?快速排序是采用的分治法进行遍历的,我们将它看作一棵二叉树,它需要遍历的次数就是二叉树的深度,而根据完全二叉树的定义,它的深度至少是lg(N+1)。因此,快速排序的遍历次数最少是lg(N+1)次。
    (02) 为什么最多是N次?这个应该非常简单,还是将快速排序看作一棵二叉树,它的深度最大是N。因此,快读排序的遍历次数最多是N次。

     1 /**
     2 实现快速排序 
     3 **/
     4 #include<bits/stdc++.h>
     5 using namespace std;
     6 //快速排序 
     7 void Swap(int &a,int &b)//交换两个数 
     8 {
     9      int temp;
    10      temp=a;
    11      a=b;
    12      b=temp;    
    13 } 
    14 int partition(int a[],int p,int r){// 确定基准元素 
    15     int x=a[p];//先设第一个元素为基准元素 ,记录下来该值 
    16     int i=p;//第一个元素的位置 
    17     int j=r+1;//最后一个元素位置的下一个元素的位置 
    18     while(true){
    19         while(a[++i]<x && i<r);//向右遍历,找到比第一个元素大的就结束 
    20         while(a[--j]>x&& j>p); //向左遍历,找到比第一个元素小的就结束 
    21         if(i>=j) break;//左边的游标大于右边的结束遍历 
    22         Swap(a[i],a[j]);//交互,使大的元素在右边,小的去了左边 
    23     }
    24     a[p]=a[j];//第一个元素和第j和元素替换 
    25     a[j]=x;
    26     return j;//这个就是一轮交换后的位置 
    27 }
    28 void QuickSort(int a[],int p,int r)
    29 {
    30     if(p<r){
    31     int q=partition(a,p,r);//一轮交换后的基准元素 
    32     QuickSort(a,p,q-1);//快排左边的 
    33     QuickSort(a,q+1,r);//快排右边的 
    34     }
    35     
    36 }
    37 //冒泡排序 
    38 void maopao(int *a,int n){
    39     for(int i=0;i<n-1;i++){
    40         for(int j=0;j<n-1-i;j++){
    41             if(a[j]>a[j+1]){
    42             int temp=a[j+1];
    43             a[j+1]=a[j];
    44             a[j]=temp;
    45                 
    46             }
    47         }
    48     }
    49 }
    50 int main()
    51 {
    52     clock_t start1,start2,end1,end2;
    53     int array[10000];
    54     int array1[10000];
    55     for(int i=0;i<10000;i++){
    56         array[i]=array1[i]=10000-i;
    57     } 
    58     start1=clock();
    59     QuickSort(array,0,10000);
    60     end1=clock();
    61     cout << "快排用的时间为" << end1-start1 << endl;
    62     for(int i=0;i<10;i++){
    63         //cout << array[i] << " ";
    64     }
    65     cout << endl;
    66     start2=clock();
    67     maopao(array1,10000);
    68     end2=clock();
    69     cout << "冒泡用的时间为" << end2-start2 << endl;
    70         for(int i=0;i<10;i++){
    71         //cout << array1[i] << " ";
    72     } 
    73     return 0;
    74  } 

    从结果中也可以看出快排的速度要比冒泡快很多、

    部分内容参考https://www.cnblogs.com/skywang12345/p/3596746.html

  • 相关阅读:
    Foundation框架
    OC中四种遍历方式
    OC中NSLog函数输出格式罗列
    字典NSDictionary和NSMutableDictionary的使用
    增加自己的作图能力
    使用forin循环时的注意事项
    固定資産管理
    SAPの販売管理で、価格設定をするまでの関連カスタマイズ画面
    【販売管理】荷印(ケースマーク)の記載内容および記載方法
    購買(MM)用語と意味の一覧
  • 原文地址:https://www.cnblogs.com/henuliulei/p/10573406.html
Copyright © 2011-2022 走看看