所用函数:
cv2.threshold() —— 阈值处理
cv2.findContours() —— 轮廓检测
cv2.boundingRect() —— 最大外接矩阵
cv2.rectangle() —— 画出矩形
cv2.minAreaRect —— 找到最小外接矩形(矩形具有一定的角度)
cv2.boxPoints —— 外接矩形的坐标位置
cv2.drawContours(image, [box], 0, (0, 0, 255), 3) —— 根据点画出矩形
1 import cv2 2 import numpy as np 3 4 image = cv2.imread('new.jpg') 5 img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 6 ret, thresh = cv2.threshold(img, 230, 255, cv2.THRESH_BINARY_INV) 7 contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) 8 9 for c in contours: 10 # 找到边界坐标 11 x, y, w, h = cv2.boundingRect(c) # 计算点集最外面的矩形边界 12 cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2) 13 14 # 找面积最小的矩形 15 rect = cv2.minAreaRect(c) 16 # 得到最小矩形的坐标 17 box = cv2.boxPoints(rect) 18 # 标准化坐标到整数 19 box = np.int0(box) 20 # 画出边界 21 cv2.drawContours(image, [box], 0, (0, 0, 255), 3) 22 # 计算最小封闭圆的中心和半径 23 (x, y), radius = cv2.minEnclosingCircle(c) 24 # 换成整数integer 25 center = (int(x),int(y)) 26 radius = int(radius) 27 # 画圆 28 cv2.circle(image, center, radius, (0, 255, 0), 2) 29 30 cv2.drawContours(image, contours, -1, (255, 0, 0), 1) 31 cv2.imshow("img", image) 32 cv2.imwrite("img_1.jpg", image) 33 cv2.waitKey(0)