/*Binomial Showdown Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 15798 Accepted: 4839
Description
In how many ways can you choose k elements out of n elements, not taking order into account? Write a program to compute this number. Input
The input will contain one or more test cases. Each test case consists of one line containing two integers n (n>=1) and k (0<=k<=n). Input is terminated by two zeroes for n and k. Output
For each test case, print one line containing the required number. This number will always fit into an integer, i.e. it will be less than 231. Warning: Don't underestimate the problem. The result will fit into an integer - but if all intermediate results arising during the computation will also fit into an integer depends on your algorithm. The test cases will go to the limit.
Sample Input
4 2 10 5 49 6 0 0
Sample Output
6 252 13983816
*/
#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
int n,k,i;
__int64 sum;
while(scanf("%d%d",&n,&k),k||n)
{
sum=1;
if(k>n/2)
k=n-k;
if(k==0)
{
printf("%d\n",sum);
continue;
}
for(i=0;i<k;i++)
{
sum*=n-i;//虽然最后结果是在int范围内,但此时中间的sum可能会在最后一下相乘的情况下超过,所以用__int64
sum/=i+1;
}
printf("%I64d\n",sum);
}
return 0;
}
或者别人的代码
#include <iostream> using namespace std; int main() { int m,n; while (cin>>m>>n,m||n) { double result = 1; if(n>m/2) n=m-n; if(n==0) { cout<<"1"<<endl; continue; } for (int i = 0;i < n;i++) { result*=(m-i); result/=(n-i); } printf("%.0lf\n",result); } return 0; }
排列组合递归调用
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
int C(int n,int m)
{
if(n==m||m==0) return 1;
if(m==1||m==n-1) return n;
return C(n-1,m-1)+C(n-1,m);
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
printf("%d\n",C(n,m));
return 0;
}