zoukankan      html  css  js  c++  java
  • 红黑树-算法四 实现

    算法四中给出了红黑树的构造代码:

    import edu.princeton.cs.algs4.Queue;
    import edu.princeton.cs.algs4.StdOut;
    
    public class RedBlackLiteBST<Key extends Comparable<Key>, Value> {
    
        private static final boolean RED   = true;
        private static final boolean BLACK = false;
    
        private Node root;     // root of the BST
        private int n;         // number of key-value pairs in BST
    
        // BST helper node data type
        private class Node {
            private Key key;           // key
            private Value val;         // associated data
            private Node left, right;  // links to left and right subtrees
            private boolean color;     // color of parent link
    
            public Node(Key key, Value val, boolean color) {
                this.key = key;
                this.val = val;
                this.color = color;
            }
        }
    
        /***************************************************************************
         *  Standard BST search.
         ***************************************************************************/
    
        // return value associated with the given key, or null if no such key exists
        public Value get(Key key) {
            return get(root, key);
        }
        public Value get(Node x, Key key) {
            while (x != null) {
                int cmp = key.compareTo(x.key);
                if      (cmp < 0) x = x.left;
                else if (cmp > 0) x = x.right;
                else              return x.val;
            }
            return null;
        }
    
        // is there a key-value pair in the symbol table with the given key?
        public boolean contains(Key key) {
            return get(key) != null;
        }
    
    
        /***************************************************************************
         *  Red-black tree insertion.
         ***************************************************************************/
    
        public void put(Key key, Value val) {
            root = insert(root, key, val);
            root.color = BLACK;
            assert check();
        }
    
        private Node insert(Node h, Key key, Value val) {
            if (h == null) {
                n++;
                return new Node(key, val, RED);
            }
    
            int cmp = key.compareTo(h.key);
            if      (cmp < 0) h.left  = insert(h.left,  key, val);
            else if (cmp > 0) h.right = insert(h.right, key, val);
            else              h.val   = val;
    
            // fix-up any right-leaning links
            if (isRed(h.right) && !isRed(h.left))      h = rotateLeft(h);
            if (isRed(h.left)  &&  isRed(h.left.left)) h = rotateRight(h);
            if (isRed(h.left)  &&  isRed(h.right))     flipColors(h);
    
            return h;
        }
    
        /***************************************************************************
         *  Red-black tree helper functions.
         ***************************************************************************/
    
        // is node x red (and non-null) ?
        private boolean isRed(Node x) {
            if (x == null) return false;
            return x.color == RED;
        }
    
        // rotate right
        private Node rotateRight(Node h) {
            assert (h != null) && isRed(h.left);
            Node x = h.left;
            h.left = x.right;
            x.right = h;
            x.color = h.color;
            h.color = RED;
            return x;
        }
    
        // rotate left
        private Node rotateLeft(Node h) {
            assert (h != null) && isRed(h.right);
            Node x = h.right;
            h.right = x.left;
            x.left = h;
            x.color = h.color;
            h.color = RED;
            return x;
        }
    
        // precondition: two children are red, node is black
        // postcondition: two children are black, node is red
        private void flipColors(Node h) {
            assert !isRed(h) && isRed(h.left) && isRed(h.right);
            h.color = RED;
            h.left.color = BLACK;
            h.right.color = BLACK;
        }
    
    
        /***************************************************************************
         *  Utility functions.
         ***************************************************************************/
        // return number of key-value pairs in symbol table
        public int size() {
            return n;
        }
    
        // is the symbol table empty?
        public boolean isEmpty() {
            return n == 0;
        }
    
        // height of tree (1-node tree has height 0)
        public int height() { return height(root); }
        private int height(Node x) {
            if (x == null) return -1;
            return 1 + Math.max(height(x.left), height(x.right));
        }
    
        // return the smallest key; null if no such key
        public Key min() { return min(root); }
        private Key min(Node x) {
            Key key = null;
            while (x != null) {
                key = x.key;
                x = x.left;
            }
            return key;
        }
    
        // return the largest key; null if no such key
        public Key max() { return max(root); }
        private Key max(Node x) {
            Key key = null;
            while (x != null) {
                key = x.key;
                x = x.right;
            }
            return key;
        }
    
    
        /***************************************************************************
         *  Iterate using an inorder traversal.
         *  Iterating through N elements takes O(N) time.
         ***************************************************************************/
        public Iterable<Key> keys() {
            Queue<Key> queue = new Queue<Key>();
            keys(root, queue);
            return queue;
        }
    
        private void keys(Node x, Queue<Key> queue) {
            if (x == null) return;
            keys(x.left, queue);
            queue.enqueue(x.key);
            keys(x.right, queue);
        }
    
    
        /***************************************************************************
         *  Check integrity of red-black tree data structure.
         ***************************************************************************/
        private boolean check() {
            if (!isBST())            StdOut.println("Not in symmetric order");
            if (!is23())             StdOut.println("Not a 2-3 tree");
            if (!isBalanced())       StdOut.println("Not balanced");
            return isBST() && is23() && isBalanced();
        }
    
        // does this binary tree satisfy symmetric order?
        // Note: this test also ensures that data structure is a binary tree since order is strict
        private boolean isBST() {
            return isBST(root, null, null);
        }
    
        // is the tree rooted at x a BST with all keys strictly between min and max
        // (if min or max is null, treat as empty constraint)
        // Credit: Bob Dondero's elegant solution
        private boolean isBST(Node x, Key min, Key max) {
            if (x == null) return true;
            if (min != null && x.key.compareTo(min) <= 0) return false;
            if (max != null && x.key.compareTo(max) >= 0) return false;
            return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
        }
    
        // Does the tree have no red right links, and at most one (left)
        // red links in a row on any path?
        private boolean is23() { return is23(root); }
        private boolean is23(Node x) {
            if (x == null) return true;
            if (isRed(x.right)) return false;
            if (x != root && isRed(x) && isRed(x.left))
                return false;
            return is23(x.left) && is23(x.right);
        }
    
        // do all paths from root to leaf have same number of black edges?
        private boolean isBalanced() {
            int black = 0;     // number of black links on path from root to min
            Node x = root;
            while (x != null) {
                if (!isRed(x)) black++;
                x = x.left;
            }
            return isBalanced(root, black);
        }
    
        // does every path from the root to a leaf have the given number of black links?
        private boolean isBalanced(Node x, int black) {
            if (x == null) return black == 0;
            if (!isRed(x)) black--;
            return isBalanced(x.left, black) && isBalanced(x.right, black);
        }
    
    
        /***************************************************************************
         *  Test client.
         ***************************************************************************/
        public static void main(String[] args) {
    
            String test = "S E A R C H E X A M P L E";
            String[] keys = test.split(" ");
            RedBlackLiteBST<String, Integer> st = new RedBlackLiteBST<String, Integer>();
            for (int i = 0; i < keys.length; i++)
                st.put(keys[i], i);
    
            StdOut.println("size = " + st.size());
            StdOut.println("min  = " + st.min());
            StdOut.println("max  = " + st.max());
            StdOut.println();
    
    
            // print keys in order using allKeys()
            StdOut.println("Testing keys()");
            StdOut.println("--------------------------------");
            for (String s : st.keys())
                StdOut.println(s + " " + st.get(s));
            StdOut.println();
    
            // insert N elements in order if one command-line argument supplied
            if (args.length == 0) return;
            int n = Integer.parseInt(args[0]);
            RedBlackLiteBST<Integer, Integer> st2 = new RedBlackLiteBST<Integer, Integer>();
            for (int i = 0; i < n; i++) {
                st2.put(i, i);
                int h = st2.height();
                StdOut.println("i = " + i + ", height = " + h + ", size = " + st2.size());
            }
    
    
            StdOut.println("size = " + st2.size());
        }
    }
  • 相关阅读:
    css:chorm调试工具(修改样式、重置缩放比例、错误提示、语法快速生成)
    多线程:线程不安全案例(买票、银行取钱、集合)
    css:选择器(标签、类、ID、通配符)
    多线程:(优先级、守护线程)
    多线程(线程的状态、终止、休眠、礼让、合并)
    html:标签(标题、段落、换行、文本格式化、图像)
    多线程:多线程的应用(网图下载、模拟售票、龟兔赛跑)
    Struts2
    框架、MVC、MVC框架
    html5、css3、BootStrap
  • 原文地址:https://www.cnblogs.com/hequnwang/p/14293159.html
Copyright © 2011-2022 走看看