((xi,yi),(xj,yj))
切比雪夫距离(d1=max{left|xi-xj ight|, left|yi-yj ight|})
容易发现(d1=cfrac{left|left|xi-xj ight|+left|yi-yj ight| ight|+left|left|xi-xj ight|-left|yi-yj ight| ight|}{2})
((cfrac{xi+yi}{2}, cfrac{xi-yi}{2}),(cfrac{xj+yj}{2}, cfrac{xj-yj}{2}))
哈夫曼距离(d2=cfrac{left|(xi+yi)-(xj+yj) ight|}{2}+cfrac{left|(xi-yi)-(xj-yj) ight|}{2})
讨论(xi)和(xj)的大小,以及(yi)和(yj)的大小,有(d1=d2)
把点如此变换可以把切比雪夫距离变成曼哈顿距离