zoukankan      html  css  js  c++  java
  • TypeError: can't pickle dict_values objects

    Future major versions of TensorFlow will allow gradients to flow
    into the labels input on backprop by default.

    See @{tf.nn.softmax_cross_entropy_with_logits_v2}.

    N:Anaconda3installenvszhouying2libsite-packages ensorflowpythonopsgradients_impl.py:100: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
    "Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
    2020-04-11 11:23:00.226436: I T:srcgithub ensorflow ensorflowcoreplatformcpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
    creating index...
    index created!
    2020-04-11 11:45:29.830021: W T:srcgithub ensorflow ensorflowcoreframeworkop_kernel.cc:1306] Invalid argument: TypeError: can't pickle dict_values objects
    Traceback (most recent call last):

    File "N:Anaconda3installenvszhouying2libsite-packages ensorflowpythonopsscript_ops.py", line 158, in __call__
    ret = func(*args)

    File "N:Anaconda3installenvszhouying2libsite-packagesobject_detection-0.1-py3.6.eggobject_detectionmetricscoco_evaluation.py", line 358, in first_value_func
    self._metrics = self.evaluate()

    File "N:Anaconda3installenvszhouying2libsite-packagesobject_detection-0.1-py3.6.eggobject_detectionmetricscoco_evaluation.py", line 207, in evaluate
    self._detection_boxes_list)

    File "N:Anaconda3installenvszhouying2libsite-packagesobject_detection-0.1-py3.6.eggobject_detectionmetricscoco_tools.py", line 118, in LoadAnnotations
    results.dataset['categories'] = copy.deepcopy(self.dataset['categories'])

    File "N:Anaconda3installenvszhouying2libcopy.py", line 169, in deepcopy
    rv = reductor(4)

    TypeError: can't pickle dict_values objects

    F:TensorflowProjectObjectDetectionmodels-1.12.0 esearchobject_detectionmetrics

    coco_tools.py  118行

    #results.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
    results.dataset['categories'] = copy.deepcopy(list(self.dataset['categories']))

  • 相关阅读:
    [算法初步]希尔排序
    逆波兰表达式1(简介)
    [数据结构]之链表
    [数据结构]之栈
    [算法初步]之归并排序
    [算法初步]之快速排序
    [算法初步]之冒泡排序
    逆波兰表达式2中缀转后缀表达式)
    [算法初步]之简单选择排序
    [数据结构]之顺序表
  • 原文地址:https://www.cnblogs.com/herd/p/12678657.html
Copyright © 2011-2022 走看看