zoukankan      html  css  js  c++  java
  • labelme coco

    list_files.py

    from labelme2coco2 import labelme2coco
    import os
    import glob
    
    # 获取文件名
    file_names = os.listdir("./img2/")
    
    json_files = []
    new_json_files = []
    for file_name in file_names:
        if ".json" in file_name:
            print(file_name)
            new_json_file_name = file_name.replace(".json","-1.json")
            json_files.append(file_name)
            new_json_files.append(new_json_file_name)
    # 文件名拼接路径
    new_file_list = [os.path.join("F:/TensorflowProject/img2/",file) for file in new_json_files]
    file_list = [os.path.join("F:/TensorflowProject/img2/",file) for file in json_files]
    #print(file_list)
    
    for i in range(len(file_list)):
        print(file_list[i])
        print(new_file_list[i])
        labelme_json = glob.glob(file_list[i])
    
        #labelme_json = file_list[i]
        new_labelme_json = new_file_list[i]
        labelme2coco(labelme_json, new_labelme_json)

    labelme2coco2.py

    # -*- coding:utf-8 -*-
    # !/usr/bin/env python
     
    import argparse
    import json
    import matplotlib.pyplot as plt
    import skimage.io as io
    import cv2
    from labelme import utils
    import numpy as np
    import glob
    import PIL.Image
     
    class MyEncoder(json.JSONEncoder):
        def default(self, obj):
            if isinstance(obj, np.integer):
                return int(obj)
            elif isinstance(obj, np.floating):
                return float(obj)
            elif isinstance(obj, np.ndarray):
                return obj.tolist()
            else:
                return super(MyEncoder, self).default(obj)
     
    class labelme2coco(object):
        def __init__(self, labelme_json=[], save_json_path=''):
            '''
            :param labelme_json: 所有labelme的json文件路径组成的列表
            :param save_json_path: json保存位置
            '''
            self.labelme_json = labelme_json
            self.save_json_path = save_json_path
            self.images = []
            self.categories = []
            self.annotations = []
            # self.data_coco = {}
            self.label = []
            self.annID = 1
            self.height = 0
            self.width = 0
     
            self.save_json()
     
        def data_transfer(self):
     
            for num, json_file in enumerate(self.labelme_json):
                with open(json_file, 'r') as fp:
                    data = json.load(fp)  # 加载json文件
                    self.images.append(self.image(data, num))
                    for shapes in data['shapes']:
                        label = shapes['label']
                        if label not in self.label:
                            self.categories.append(self.categorie(label))
                            self.label.append(label)
                        points = shapes['points']#这里的point是用rectangle标注得到的,只有两个点,需要转成四个点
                        #points.append([points[0][0],points[1][1]])
                        #points.append([points[1][0],points[0][1]])
                        self.annotations.append(self.annotation(points, label, num))
                        self.annID += 1
     
        def image(self, data, num):
            image = {}
            img = utils.img_b64_to_arr(data['imageData'])  # 解析原图片数据
            # img=io.imread(data['imagePath']) # 通过图片路径打开图片
            # img = cv2.imread(data['imagePath'], 0)
            height, width = img.shape[:2]
            img = None
            image['height'] = height
            image['width'] = width
            image['id'] = num + 1
            #image['file_name'] = data['imagePath'].split('/')[-1]
            image['file_name'] = data['imagePath'][3:14]
            self.height = height
            self.width = width
     
            return image
     
        def categorie(self, label):
            categorie = {}
            categorie['supercategory'] = 'Cancer'
            categorie['id'] = len(self.label) + 1  # 0 默认为背景
            categorie['name'] = label
            return categorie
     
        def annotation(self, points, label, num):
            annotation = {}
            annotation['segmentation'] = [list(np.asarray(points).flatten())]
            annotation['iscrowd'] = 0
            annotation['image_id'] = num + 1
            # annotation['bbox'] = str(self.getbbox(points)) # 使用list保存json文件时报错(不知道为什么)
            # list(map(int,a[1:-1].split(','))) a=annotation['bbox'] 使用该方式转成list
            annotation['bbox'] = list(map(float, self.getbbox(points)))
            annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]
            # annotation['category_id'] = self.getcatid(label)
            annotation['category_id'] = self.getcatid(label)#注意,源代码默认为1
            annotation['id'] = self.annID
            return annotation
     
        def getcatid(self, label):
            for categorie in self.categories:
                if label == categorie['name']:
                    return categorie['id']
            return 1
     
        def getbbox(self, points):
            # img = np.zeros([self.height,self.width],np.uint8)
            # cv2.polylines(img, [np.asarray(points)], True, 1, lineType=cv2.LINE_AA)  # 画边界线
            # cv2.fillPoly(img, [np.asarray(points)], 1)  # 画多边形 内部像素值为1
            polygons = points
     
            mask = self.polygons_to_mask([self.height, self.width], polygons)
            return self.mask2box(mask)
     
        def mask2box(self, mask):
            '''从mask反算出其边框
            mask:[h,w]  0、1组成的图片
            1对应对象,只需计算1对应的行列号(左上角行列号,右下角行列号,就可以算出其边框)
            '''
            # np.where(mask==1)
            index = np.argwhere(mask == 1)
            rows = index[:, 0]
            clos = index[:, 1]
            # 解析左上角行列号
            left_top_r = np.min(rows)  # y
            left_top_c = np.min(clos)  # x
     
            # 解析右下角行列号
            right_bottom_r = np.max(rows)
            right_bottom_c = np.max(clos)
     
            # return [(left_top_r,left_top_c),(right_bottom_r,right_bottom_c)]
            # return [(left_top_c, left_top_r), (right_bottom_c, right_bottom_r)]
            # return [left_top_c, left_top_r, right_bottom_c, right_bottom_r]  # [x1,y1,x2,y2]
            return [left_top_c, left_top_r, right_bottom_c - left_top_c,
                    right_bottom_r - left_top_r]  # [x1,y1,w,h] 对应COCO的bbox格式
     
        def polygons_to_mask(self, img_shape, polygons):
            mask = np.zeros(img_shape, dtype=np.uint8)
            mask = PIL.Image.fromarray(mask)
            xy = list(map(tuple, polygons))
            PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
            mask = np.array(mask, dtype=bool)
            return mask
     
        def data2coco(self):
            data_coco = {}
            data_coco['images'] = self.images
            data_coco['categories'] = self.categories
            data_coco['annotations'] = self.annotations
            return data_coco
     
        def save_json(self):
            self.data_transfer()
            self.data_coco = self.data2coco()
            # 保存json文件
            json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4, cls=MyEncoder)  # indent=4 更加美观显示
     
    ''' 
    labelme_json = glob.glob('F:\TensorflowProject\img1\02.json')
    # labelme_json=['./Annotations/*.json']
     
    labelme2coco(labelme_json, 'F:\TensorflowProject\img1\02-1.json')
    '''

    参考:https://blog.csdn.net/qq_34713831/article/details/88891529

  • 相关阅读:
    开发中常用的JS知识点集锦
    浏览器音频兼容和ffmpeg的音频转码使用
    web页面和小程序页面实现瀑布流效果
    微信小程序之支付密码输入demo
    Mac安装nginx配置过程
    前端工具mock的使用
    汇编语言学习
    Swift学习笔记
    如何快速融入团队并成为团队核心(四)
    如何快速融入团队并成为团队核心(三)
  • 原文地址:https://www.cnblogs.com/herd/p/12851937.html
Copyright © 2011-2022 走看看