zoukankan      html  css  js  c++  java
  • 测试

    yolov5测试

    import time
    start = time.time()
    import numpy as np
    import os
    import six.moves.urllib as urllib
    import sys
    import tarfile
    
    
    import socket
    import zipfile
     
    from collections import defaultdict
    from io import StringIO
    from PIL import Image
    import pandas as pd
    
    #import cv2
    
    #################################################
    import argparse
    import time
    from pathlib import Path
    
    import cv2
    import torch
    import torch.backends.cudnn as cudnn
    from numpy import random
    
    from models.experimental import attempt_load
    from utils.datasets import LoadStreams,LoadStreams2, LoadImages,LoadWebcam,letterbox
    from utils.general import check_img_size, check_requirements, non_max_suppression, apply_classifier, scale_coords, 
        xyxy2xywh, strip_optimizer, set_logging, increment_path
    from utils.plots import plot_one_box,plot_one_box2
    from utils.torch_utils import select_device, load_classifier, time_synchronized
    
    import numpy as np
    import pyrealsense2 as rs
    import math
    #################################################
    
    
    class AppState:
    
        def __init__(self, *args, **kwargs):
            self.WIN_NAME = 'RealSense'
            self.pitch, self.yaw = math.radians(-10), math.radians(-15)
            self.translation = np.array([0, 0, -1], dtype=np.float32)
            self.distance = 2
            self.prev_mouse = 0, 0
            self.mouse_btns = [False, False, False]
            self.paused = False
            self.decimate = 1
            self.scale = True
            self.color = True
    
        def reset(self):
            self.pitch, self.yaw, self.distance = 0, 0, 2
            self.translation[:] = 0, 0, -1
    
        
        def rotation(self):
            Rx, _ = cv2.Rodrigues((self.pitch, 0, 0))
            Ry, _ = cv2.Rodrigues((0, self.yaw, 0))
            return np.dot(Ry, Rx).astype(np.float32)
    
        
        def pivot(self):
            return self.translation + np.array((0, 0, self.distance), dtype=np.float32)
    
    
    
    
    
    # Helper code
    def load_image_into_numpy_array(image_param):
      img_shape = image_param.shape
      im_width = img_shape[1]
      im_height = img_shape[0]
    
      image_param1 = Image.fromarray(image_param.astype('uint8')).convert('RGB')
      #(im_width, im_height) = image_param.size
      #im_width = 640
      #im_height = 480
      return np.array(image_param1.getdata()).reshape(
          (im_height, im_width, 3)).astype(np.uint8)
    
    
    
    def bytesToHexString(bs):
        return ''.join(['%02X' % b for b in bs])
    
    
    
    
    class listDlg():
        def __init__(self, name="Dlg"):
            # 构造函数
            super().__init__()
            self.cnt_tmp = 0
    
            #init camera id
            self.CAM_ID = 1
            #init QTimer
            #self.timer_camera = QtCore.QTimer()
            self.timer_camera = time.time()
            #init camera
            self.camera = cv2.VideoCapture()
    
            #self.initConnect()
    
            self.device = select_device('')
            # half precision only supported on CUDA
            self.half = self.device.type != 'cpu'  
            #self.modelc = load_classifier(name='resnet101', n=2)  # initialize
            #self.modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=self.device)['model']).to(self.device).eval()
    
            # load FP32 model
            #self.model = attempt_load('yolov5s.pt', map_location=device)  
            self.model = attempt_load('yolov5s.pt', map_location=self.device)
            
            self.conf_thres=0.25
            self.iou_thres=0.45
            self.classes=''
            self.agnostic=False
            self.augment = False
            # Get names and colors
            self.names = self.model.module.names if hasattr(self.model, 'module') else self.model.names
            self.colors = [[random.randint(0, 255) for _ in range(3)] for _ in self.names]
    
        
            self.img_size = 640
            self.checkObj=False
    
            #################realsense###############
            # Configure depth and color streams
            self.pipeline = rs.pipeline()
            self.config = rs.config()
            self.config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
            self.config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
    
            self.state = AppState()
    
            self.socket_client = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
            self.rec_code = self.socket_client.connect_ex(("192.168.2.200",9000))
            
            # Start streaming
            #self.pipeline.start(self.config)
    
            # Get stream profile and camera intrinsics
            #self.profile = self.pipeline.get_active_profile()
            #self.depth_profile = rs.video_stream_profile(self.profile.get_stream(rs.stream.depth))
            #self.depth_intrinsics = self.depth_profile.get_intrinsics()
            #self.w, self.h = self.depth_intrinsics.width, self.depth_intrinsics.height
            
            # Processing blocks
            #self.pc = rs.pointcloud()
            #self.decimate = rs.decimation_filter()
            ##self.decimate.set_option(rs.option.filter_magnitude, 2 ** state.decimate)
            #self.colorizer = rs.colorizer()
    
            self.pc = rs.pointcloud()
            self.decimate = rs.decimation_filter()
            #self.decimate.set_option(rs.option.filter_magnitude, 2 ** self.state.decimate)
            self.colorizer = rs.colorizer()
    
            #cv2.setMouseCallback(self.state.WIN_NAME, self.mouse_cb)
    
            self.pipeline.start(self.config)
    
            self.show_camera_action()
            
        def show_camera_action(self):
            while True:
                #flag, self.image = self.camera.read()
                frames = self.pipeline.wait_for_frames()
    
                depth_frame = frames.get_depth_frame()
                color_frame = frames.get_color_frame()
                
                depth_frame = self.decimate.process(depth_frame)
                
                # Grab new intrinsics (may be changed by decimation)
                depth_intrinsics = rs.video_stream_profile(depth_frame.profile).get_intrinsics()
                self.w, self.h = depth_intrinsics.width, depth_intrinsics.height
                
                depth_image = np.asanyarray(depth_frame.get_data())
                color_image = np.asanyarray(color_frame.get_data())
                
                depth_colormap = np.asanyarray(self.colorizer.colorize(depth_frame).get_data())
                
                if self.state.color:
                    mapped_frame, color_source = color_frame, color_image
                else:
                    mapped_frame, color_source = depth_frame, depth_colormap
    
                #mapped_frame, color_source = depth_frame, depth_colormap
    
                points = self.pc.calculate(depth_frame)
                self.pc.map_to(mapped_frame)
    
                # Pointcloud data to arrays
                v, t = points.get_vertices(), points.get_texture_coordinates()
                verts = np.asanyarray(v).view(np.float32).reshape(-1, 3)  # xyz
                texcoords = np.asanyarray(t).view(np.float32).reshape(-1, 2)  # uv
    
                #npy_vtx = np.zeros((len(verts), 3), float)
                #npy_vtx[i][0] = np.float(vtx[i][0])
                
                #print("======================================")
                #print(verts[26800][0],verts[26800][1],verts[26800][2])
                #print(verts[6800][0],verts[6800][1],verts[6800][2])
    
                rec_data=self.socket_client.recv(1024)
                str1=bytesToHexString(rec_data)
                if str1.startswith('01'):
                    #print(len(str1))
                    if len(str1)==40:
                        print(int(str1[0:2],16),int(str1[12:14],16),int(str1[18:20]+''+str1[16:18],16),int(str1[26:28]+''+str1[24:26],16),int(str1[34:36]+''+str1[32:34],16))
                    
                #print(str1)
                
    
                self.img_test2 = cv2.resize(depth_colormap, (320, 240))
                #images1 = np.hstack((color_image,depth_image))
                #####################################################################
    
                
                self.im0 = color_image.copy()
                self.cameraImg= color_image.copy()
                #cv2.imshow(self.state.WIN_NAME, self.out)
                #cv2.imshow(self.state.WIN_NAME, color_image)
    
                self.detectionObjectFunction()
    
                cv2.waitKey(5)
                #time.sleep(0.2)
                
                
                
            pass
                
    
        def detectionObjectFunction(self):
            #print("check")
            img = letterbox(self.cameraImg, new_shape=self.img_size)[0]
            # Convert
            img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
            img = np.ascontiguousarray(img)
    
            ####################################################
            img = torch.from_numpy(img).to(self.device)
            img = img.half() if self.half else img.float()  # uint8 to fp16/32
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            if img.ndimension() == 3:
                img = img.unsqueeze(0)
    
            # Inference
            t1 = time_synchronized()
            pred = self.model(img, augment=self.augment)[0]
    
            #print('thres:%d '%self.conf_thres)
            # Apply NMS
            pred = non_max_suppression(pred, self.conf_thres, self.iou_thres)
            #def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
            t2 = time_synchronized()
            
            # Apply Classifier
            
            # Process detections
            for i, det in enumerate(pred):  # detections per image
                # batch_size >= 1
                #if webcam:  
                #    p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
                #else:
                #    p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
                #    
                #p = Path(p)  # to Path
                #save_path = str(save_dir / p.name)  # img.jpg
                #txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
                #s += '%gx%g ' % img.shape[2:]  # print string
    
                # normalization gain whwh
                #gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  
                if len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4], self.im0.shape).round()
                    
                    # Print results
                    for c in det[:, -1].unique():
                        n = (det[:, -1] == c).sum()  # detections per class
                        #s += f'{n} {names[int(c)]}s, '  # add to string
            
                    # Write results
                    for *rect1, conf, cls in reversed(det):
                        if self.names[int(cls)] !='person':
                            continue
                        print(self.names[int(cls)])
    
                        c1, c2 = (int(rect1[0]), int(rect1[1])), (int(rect1[2]), int(rect1[3]))
                        label = f'{self.names[int(cls)]} {conf:.2f}'
                        print(c1,'     ',c2)
                        plot_one_box(rect1, self.im0, label=label, color=self.colors[int(cls)], line_thickness=2)
                    
                # Print time (inference + NMS)
                print(f'detection time. ({t2 - t1:.3f}s)')
    
                # Stream results
                #if view_img:
                cv2.imshow('win2', self.im0)
                #self.img2 = self.im0.copy()
                #self.checkImgShow()
    
    
            ####################################################
            pass
    
    
    
    
    
    
    
    
    dlg = listDlg('')

    detection time. (0.348s)
    1 20 1973 690 1017
    person
    (51, 6) (64, 49)
    person
    (308, 343) (527, 480)
    detection time. (0.330s)
    1 20 2250 563 485
    person
    (311, 339) (525, 480)
    detection time. (0.322s)
    1 20 2280 574 396
    person
    (315, 337) (526, 480)
    detection time. (0.324s)
    person
    (316, 337) (532, 480)
    detection time. (0.309s)
    person
    (50, 6) (64, 50)
    person
    (317, 337) (529, 480)
    detection time. (0.329s)
    1 20 2296 576 298
    person
    (51, 5) (64, 49)
    person
    (318, 337) (533, 480)
    detection time. (0.329s)
    1 20 2281 591 277
    person
    (317, 336) (529, 480)
    detection time. (0.332s)
    1 20 2283 586 258
    person
    (318, 336) (532, 480)
    detection time. (0.363s)
    1 20 2290 567 250
    person
    (51, 7) (63, 48)
    person
    (314, 337) (521, 480)
    detection time. (0.315s)
    1 20 2426 475 354
    person
    (52, 6) (65, 48)
    person
    (316, 337) (525, 480)
    detection time. (0.360s)
    1 20 2361 505 299
    person
    (51, 7) (64, 49)
    person
    (316, 336) (529, 480)
    detection time. (0.335s)
    1 20 2338 521 269
    person
    (51, 6) (64, 48)
    person
    (320, 338) (539, 480)
    detection time. (0.392s)
    1 20 2338 520 248
    person
    (51, 6) (64, 49)
    person
    (323, 340) (545, 480)
    detection time. (0.358s)
    1 20 2310 513 232
    person
    (50, 5) (64, 49)
    person
    (316, 344) (547, 480)
    detection time. (0.362s)
    1 20 2281 478 206
    person
    (351, 358) (531, 480)
    detection time. (0.405s)
    1 20 2259 531 205
    person
    (50, 6) (64, 48)
    person
    (377, 370) (538, 480)
    detection time. (0.324s)
    1 20 2420 391 301
    person
    (359, 371) (522, 480)

    QQ 3087438119
  • 相关阅读:
    Java的Socket通信----通过 Socket 实现 TCP 编程之多线程demo(2)
    MySQL 数据备份与还原
    java实现时钟方法汇总
    java实现二叉树demo
    java实现心型、99乘法demo
    显示本月日历demo
    打开图片并显示在面板上demo
    ArraySort--冒泡排序、选择排序、插入排序工具类demo
    类的实例化顺序
    StringsUtil字符串工具类---灵活截取
  • 原文地址:https://www.cnblogs.com/herd/p/14305044.html
Copyright © 2011-2022 走看看