zoukankan      html  css  js  c++  java
  • yolov5 测试

    yolov5测试

    import argparse
    import time
    from pathlib import Path
    
    import cv2
    import torch
    import torch.backends.cudnn as cudnn
    from numpy import random
    
    import numpy as np
    
    from models.experimental import attempt_load
    
    from utils.datasets import LoadStreams,LoadStreams2, LoadImages,LoadWebcam,letterbox
    
    from utils.general import check_img_size, check_requirements, non_max_suppression, apply_classifier, scale_coords, 
        xyxy2xywh, strip_optimizer, set_logging, increment_path
    from utils.plots import plot_one_box
    from utils.torch_utils import select_device, load_classifier, time_synchronized
    
    
    device = select_device('')
    augment = False
    conf_thres=0.55
    iou_thres=0.45
    model = attempt_load('yolov5s.pt', map_location=device)
    img_size = 640
    
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
    
    
    def detectionObjectFunction():
        vc = cv2.VideoCapture(2)
        #rval, frame = vc.read()
        while True:
            rval, cameraImg = vc.read()
    
            
            img = letterbox(cameraImg, new_shape=img_size)[0]
            # Convert
            img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
            img = np.ascontiguousarray(img)
    
            ####################################################
            img = torch.from_numpy(img).to(device)
            #img = img.half() if half else img.float()  # uint8 to fp16/32
            im0 = cameraImg.copy()
            
            img = img.half()
            img = img.float()
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            if img.ndimension() == 3:
                img = img.unsqueeze(0)
    
            # Inference
            t1 = time_synchronized()
            pred = model(img, augment=augment)[0]
            #pred = model(img, augment=opt.augment)[0]
    
            #print('thres:%d '%conf_thres)
            # Apply NMS
            pred = non_max_suppression(pred, conf_thres, iou_thres)
            #def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
            t2 = time_synchronized()
            
            # Apply Classifier
            
            # Process detections
            for i, det in enumerate(pred):  # detections per image
                # batch_size >= 1
                #if webcam:  
                #    p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
                #else:
                #    p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
                #    
                #p = Path(p)  # to Path
                #save_path = str(save_dir / p.name)  # img.jpg
                #txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
                #s += '%gx%g ' % img.shape[2:]  # print string
    
                # normalization gain whwh
                #gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  
                if len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
                    
                    # Print results
                    for c in det[:, -1].unique():
                        n = (det[:, -1] == c).sum()  # detections per class
                        #s += f'{n} {names[int(c)]}s, '  # add to string
            
                    # Write results
                    for *xyxy, conf, cls in reversed(det):
                        
                        
                        label = f'{names[int(cls)]} {conf:.2f}'
                        #plot_one_box2(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=2)
                        #plot_one_box2(xyxy, im0, label=label, color=(0,255,0), line_thickness=2)
                        #plot_one_box(xyxy, im0, label=label, color=(0,255,0), line_thickness=2)
                        plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=2)
                    
                # Print time (inference + NMS)
                print(f'detection time. ({t2 - t1:.3f}s)')
    
                # Stream results
                #if view_img:
                cv2.imshow("win1", im0)
                #img2 = im0.copy()
                
    
    
            ####################################################
            #pass
    
            if cv2.waitKey(10) == 27:
                break
    
    
    
    detectionObjectFunction()

    QQ 3087438119
  • 相关阅读:
    测试1.书店的增删改查项目.链接数据库
    添加约束及打印五角星及查询
    结构
    安装StarUML 及使用时序图(Sequence Diagram)和用例图(use case diagram)
    UMLUnified Modeling Language (UML)又称统一建模语言或标准建模语言
    电视机与遥控器之间的交互
    泛型集合
    狮子和计算Java题
    华为机试——求两个数之间的素数
    判断一个数是否是素数
  • 原文地址:https://www.cnblogs.com/herd/p/14638403.html
Copyright © 2011-2022 走看看