zoukankan      html  css  js  c++  java
  • yolov5 测试

    yolov5测试

    import argparse
    import time
    from pathlib import Path
    
    import cv2
    import torch
    import torch.backends.cudnn as cudnn
    from numpy import random
    
    import numpy as np
    
    from models.experimental import attempt_load
    
    from utils.datasets import LoadStreams,LoadStreams2, LoadImages,LoadWebcam,letterbox
    
    from utils.general import check_img_size, check_requirements, non_max_suppression, apply_classifier, scale_coords, 
        xyxy2xywh, strip_optimizer, set_logging, increment_path
    from utils.plots import plot_one_box
    from utils.torch_utils import select_device, load_classifier, time_synchronized
    
    
    device = select_device('')
    augment = False
    conf_thres=0.55
    iou_thres=0.45
    model = attempt_load('yolov5s.pt', map_location=device)
    img_size = 640
    
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
    
    
    def detectionObjectFunction():
        vc = cv2.VideoCapture(2)
        #rval, frame = vc.read()
        while True:
            rval, cameraImg = vc.read()
    
            
            img = letterbox(cameraImg, new_shape=img_size)[0]
            # Convert
            img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
            img = np.ascontiguousarray(img)
    
            ####################################################
            img = torch.from_numpy(img).to(device)
            #img = img.half() if half else img.float()  # uint8 to fp16/32
            im0 = cameraImg.copy()
            
            img = img.half()
            img = img.float()
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            if img.ndimension() == 3:
                img = img.unsqueeze(0)
    
            # Inference
            t1 = time_synchronized()
            pred = model(img, augment=augment)[0]
            #pred = model(img, augment=opt.augment)[0]
    
            #print('thres:%d '%conf_thres)
            # Apply NMS
            pred = non_max_suppression(pred, conf_thres, iou_thres)
            #def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
            t2 = time_synchronized()
            
            # Apply Classifier
            
            # Process detections
            for i, det in enumerate(pred):  # detections per image
                # batch_size >= 1
                #if webcam:  
                #    p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
                #else:
                #    p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
                #    
                #p = Path(p)  # to Path
                #save_path = str(save_dir / p.name)  # img.jpg
                #txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
                #s += '%gx%g ' % img.shape[2:]  # print string
    
                # normalization gain whwh
                #gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  
                if len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
                    
                    # Print results
                    for c in det[:, -1].unique():
                        n = (det[:, -1] == c).sum()  # detections per class
                        #s += f'{n} {names[int(c)]}s, '  # add to string
            
                    # Write results
                    for *xyxy, conf, cls in reversed(det):
                        
                        
                        label = f'{names[int(cls)]} {conf:.2f}'
                        #plot_one_box2(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=2)
                        #plot_one_box2(xyxy, im0, label=label, color=(0,255,0), line_thickness=2)
                        #plot_one_box(xyxy, im0, label=label, color=(0,255,0), line_thickness=2)
                        plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=2)
                    
                # Print time (inference + NMS)
                print(f'detection time. ({t2 - t1:.3f}s)')
    
                # Stream results
                #if view_img:
                cv2.imshow("win1", im0)
                #img2 = im0.copy()
                
    
    
            ####################################################
            #pass
    
            if cv2.waitKey(10) == 27:
                break
    
    
    
    detectionObjectFunction()

    QQ 3087438119
  • 相关阅读:
    mysql 三星索引设置
    mysql 索引长度解释及不使用索引的一种特殊情况
    null作为方法的参数,并在方法里面赋值后的结果是什么?
    线程、调度线程池、异常
    系统服务化,需要考虑的问题
    05-Python之高级语法
    01-python基本语法元素
    04-Python之文件、异常和模块
    03-Python之类
    02-Python之函数
  • 原文地址:https://www.cnblogs.com/herd/p/14638403.html
Copyright © 2011-2022 走看看