zoukankan      html  css  js  c++  java
  • Tensorflow练习

    # coding: utf-8

    import tensorflow as tf

    from tensorflow.examples.tutorials.mnist import input_data

    #print("hello")

    #载入数据集
    mnist = input_data.read_data_sets("F:\TensorflowProject\MNIST_data",one_hot=True)

    #每个批次的大小,训练时一次100张放入神经网络中训练
    batch_size = 100

    #计算一共有多少个批次
    n_batch = mnist.train.num_examples//batch_size

    #定义两个placeholder
    x = tf.placeholder(tf.float32,[None,784])
    #0-9十个数字
    y = tf.placeholder(tf.float32,[None,10])
    keep_prob = tf.placeholder(tf.float32)

    #创建一个神经网络
    # W = tf.Variable(tf.zeros([784,10]))
    # b = tf.Variable(tf.zeros([10]))
    W1 = tf.Variable(tf.truncated_normal([784,2000],stddev=0.1))
    b1 = tf.Variable(tf.zeros([2000])+0.1)
    L1 = tf.nn.tanh(tf.matmul(x,W1)+b1)
    L1_drop = tf.nn.dropout(L1,keep_prob)

    #隐藏层1
    W2 = tf.Variable(tf.truncated_normal([2000,2000],stddev=0.1))
    b2 = tf.Variable(tf.zeros([2000])+0.1)
    L2 = tf.nn.tanh(tf.matmul(L1_drop,W2)+b2)
    L2_drop = tf.nn.dropout(L2,keep_prob)

    #隐藏层2
    W3 = tf.Variable(tf.truncated_normal([2000,1000],stddev=0.1))
    b3 = tf.Variable(tf.zeros([1000])+0.1)
    L3 = tf.nn.tanh(tf.matmul(L2_drop,W3)+b3)
    L3_drop = tf.nn.dropout(L3,keep_prob)

    W4 = tf.Variable(tf.truncated_normal([1000,10],stddev=0.1))
    b4 = tf.Variable(tf.zeros([10])+0.1)
    prediction = tf.nn.softmax(tf.matmul(L3_drop,W4)+b4)

    #二次代价函数
    #loss = tf.reduce_mean(tf.square(y-prediction))
    #交叉熵
    #loss = tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
    #使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

    #初始化变量
    init = tf.global_variables_initializer()

    #结果存放在一个布尔型列表中
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
    #求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

    #
    with tf.Session() as sess:
      sess.run(init)
      for epoch in range(30):
        for batch in range(n_batch):
          batch_xs,batch_ys = mnist.train.next_batch(batch_size)
          sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0})

        #测试准确率
        test_acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
        train_acc = sess.run(accuracy,feed_dict={x:mnist.train.images,y:mnist.train.labels,keep_prob:1.0})
        print("Iter: "+str(epoch)+" ,Testing Accuracy "+str(test_acc)+" Train : "+str(train_acc))

    ###########################运行效果

    Extracting F:TensorflowProjectMNIST_data	rain-images-idx3-ubyte.gz
    Extracting F:TensorflowProjectMNIST_data	rain-labels-idx1-ubyte.gz
    Extracting F:TensorflowProjectMNIST_data	10k-images-idx3-ubyte.gz
    Extracting F:TensorflowProjectMNIST_data	10k-labels-idx1-ubyte.gz
    WARNING:tensorflow:From <ipython-input-6-c16fee9228bc>:44: softmax_cross_entropy_with_logits (from tensorflow.python.ops.nn_ops) is deprecated and will be removed in a future version.
    Instructions for updating:
    
    Future major versions of TensorFlow will allow gradients to flow
    into the labels input on backprop by default.
    
    See tf.nn.softmax_cross_entropy_with_logits_v2.
    
    Iter: 0  ,Testing Accuracy  0.9394    Train : 0.948436
    Iter: 1  ,Testing Accuracy  0.9601    Train : 0.974145
    Iter: 2  ,Testing Accuracy  0.9639    Train : 0.982691
    Iter: 3  ,Testing Accuracy  0.965    Train : 0.9868
    Iter: 4  ,Testing Accuracy  0.9691    Train : 0.988891
    Iter: 5  ,Testing Accuracy  0.9698    Train : 0.9902
    Iter: 6  ,Testing Accuracy  0.9692    Train : 0.9912
    Iter: 7  ,Testing Accuracy  0.9706    Train : 0.991836
    Iter: 8  ,Testing Accuracy  0.971    Train : 0.992291
    Iter: 9  ,Testing Accuracy  0.9701    Train : 0.992818
    Iter: 10  ,Testing Accuracy  0.9706    Train : 0.993073
    Iter: 11  ,Testing Accuracy  0.9706    Train : 0.993236
    Iter: 12  ,Testing Accuracy  0.9713    Train : 0.993491
    Iter: 13  ,Testing Accuracy  0.9704    Train : 0.993782
    Iter: 14  ,Testing Accuracy  0.9707    Train : 0.994036
    Iter: 15  ,Testing Accuracy  0.9716    Train : 0.994236
    Iter: 16  ,Testing Accuracy  0.9713    Train : 0.994509
    Iter: 17  ,Testing Accuracy  0.9712    Train : 0.994691
    Iter: 18  ,Testing Accuracy  0.9714    Train : 0.994891
    Iter: 19  ,Testing Accuracy  0.9718    Train : 0.995055
    Iter: 20  ,Testing Accuracy  0.9726    Train : 0.995236
    Iter: 21  ,Testing Accuracy  0.972    Train : 0.995382
    Iter: 22  ,Testing Accuracy  0.9725    Train : 0.995473
    Iter: 23  ,Testing Accuracy  0.9728    Train : 0.995527
    Iter: 24  ,Testing Accuracy  0.9725    Train : 0.995582
    Iter: 25  ,Testing Accuracy  0.9725    Train : 0.995618
    Iter: 26  ,Testing Accuracy  0.9723    Train : 0.995673
    Iter: 27  ,Testing Accuracy  0.9726    Train : 0.9958
    Iter: 28  ,Testing Accuracy  0.9721    Train : 0.995836
    Iter: 29  ,Testing Accuracy  0.9721    Train : 0.995873
  • 相关阅读:
    AM335X UBOOT(以UART为例分析UBOOT主要流程)
    分析一个UBOOT的方法
    Omapl138中AIS文件分析(参照Using the OMAP-L138 Bootloader)(转)
    linux内核--wait_event_interruptible_timeout()函数分析(转)
    CSS3(8)过渡
    CSS3(7)2D转换
    CSS3(6)字体
    CSS3(5)文本效果
    CSS3(4)渐变
    CSS3(3)背景
  • 原文地址:https://www.cnblogs.com/herd/p/9467351.html
Copyright © 2011-2022 走看看