zoukankan      html  css  js  c++  java
  • 【leedcode】 Longest Palindromic Substring

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000,
    and there exists one unique longest palindromic substring.

    https://leetcode.com/problems/longest-palindromic-substring/

    求最大回文的长度,其实这道题比上一道有意思。

    方法1 循环查询 (该方案为O(N*N*N))

    public static boolean isPalindrome(String s, int start, int end) {
    		if (((end - start) & 0x1) == 1) {
    			while (start + 1 != end) {
    				if (s.charAt(start++) != s.charAt(end--)) {
    					return false;
    				}
    			}
    			return s.charAt(start) == s.charAt(end);
    		} else {
    			while (start != end) {
    				if (s.charAt(start++) != s.charAt(end--)) {
    					return false;
    				}
    
    			}
    		}
    
    		return true;
    	}
    
    	public static String longestPalindrome_1(String s) {
    		int len = s.length();
    		if (len < 2) {
    			return s;
    		}
    		for (int i = 0, end=len/2; i < end; i++) {
    			for (int j = len - 1, k = i; k > -1; j--, k--) {
    				if (k == j && j == i) {
    					return "";
    				}
    				if (isPalindrome(s, k, j)) {
    					return s.substring(k, j + 1);
    				}
    			}
    		}
    
    		return "";
    	}
    

    方法2 动态规划 (该方案为O(N*N))

    由于没学过动态规划,特意去学习了一下

    /**
    	 * 
    	 * 1. 初始条件:
    空串 看作是回文的最初始条件,LP[i][i-1]=1。这作为初始状态,并不认为是有回文。
    单字符串 是直接认为有回文的,LP[i][i]=1。 
    2. 状态转移:
    若LP[i][j]=1且a[i-1]==a[j+1] ,那么有LP[i-1][j+1]=1,否则LP[i-1][j+1]=0
    	 * @param s
    	 * @return
    	 */
    	public static String longestPalindromeDP_2(String s) {
    		int n = s.length();
    		int longestBegin = 0;
    		int maxLen = 1;
    		boolean[][] table = new boolean[n][n];
    		// 单字符
    		for (int i = 0; i < n; i++) {
    			table[i][i] = true;
    		}
    		// 双字符
    		for (int i = 0; i < n - 1; i++) {
    			if (s.charAt(i) == s.charAt(i + 1)) {
    				table[i][i + 1] = true;
    				longestBegin = i;
    				maxLen = 2;
    			}
    		}
    		// 子串长度
    		for (int len = 3; len <= n; len++) {
    			// 子串的起始位置
    			for (int i = 0; i < n - len + 1; i++) {
    				// 子串的结束位置
    				int j = i + len - 1;
    				// DP条件
    				if (table[i + 1][j - 1] && s.charAt(i) == s.charAt(j) ) {
    					table[i][j] = true;
    					longestBegin = i;
    					maxLen = len;
    				}
    			}
    		}
    		return s.substring(longestBegin, longestBegin + maxLen);
    	}
    

    方法3 中心扩展,方法1的优化版本 (该方案为O(N*N))

    static class Pair {
    		int s;
    		int e;
    		
    		public Pair(int s, int e) {
    			this.s = s;
    			this.e = e;
    		}
    		
    		int length() {
    			return e - s + 1;
    		}
    	}
    
    public static Pair expandAroundCenter2(String s, int c1, int c2) {
    		int l = c1, r = c2;
    		int n = s.length();
    		while (l > -1 && r < n && s.charAt(l) == s.charAt(r)) {
    			l--;
    			r++;
    		}
    		return new Pair(l + 1, r);
    	}
    
    	public static String longestPalindromeSimple2(String s) {
    		int n = s.length();
    		if (n == 0)
    			return "";
    		Pair longest = new Pair(0, 1); // a single char itself is a
    											// palindrome
    		int i = 0;
    		// 偶回文
    		Pair p2 = expandAroundCenter2(s, i, i + 1);
    		if (p2.length() > longest.length())
    			longest = p2;
    		for (i = 1; i < n - 1; i++) {
    			// 奇回文
    			Pair p1 = expandAroundCenter2(s, i, i);
    			if (p1.length() > longest.length())
    				longest = p1;
    			// 偶回文
    			p2 = expandAroundCenter2(s, i, i + 1);
    			if (p2.length() > longest.length())
    				longest = p2;
    		}
    		return s.substring(longest.s,longest.e);
    	}
    

    方法.后缀数组, logN * O(n)

    方法5.Manacher算法, O(n)

    // ^ and $ 避免空指针
    	 static StringBuilder preProcess(String s) {
    		int n = s.length();
    		StringBuilder buff = new StringBuilder("^");
    		for (int i = 0; i < n; i++) {
    			buff.append("#").append(s.charAt(i));
    		}
    		buff.append("#$");
    		return buff;
    	}
    public static String longestPalindrome(String s) {
    		if (s.length() < 2) {
    			return s;
    		}
    		// 插入到^#c#a#b#b#a#$
    		StringBuilder T = preProcess(s);
    		int length = T.length();
    		int[] p = new int[length]; //存储每一个位置的长度
    		int C = 0, R = 0;
    
    		for (int i = 1; i < length - 1; i++) {
    			
    			int i_mirror = C - (i - C);
    			int diff = R - i;
    //			prettyPrint(T, C, R, i, i_mirror, p);
    			if (diff >= 0)// 当前i在C和R之间,可以利用回文的对称属性
    			{
    				// R 能移动已经判断是相等过
    				if (p[i_mirror] < diff)// i的对称点的回文长度在C的大回文范围内部
    				{
    					p[i] = p[i_mirror];
    //					System.out.println(T.charAt(i_mirror) + "<<$>>"+ T.charAt(i));
    				} else {
    					p[i] = diff;
    					// i处的回文可能超出C的大回文范围了
    					while (T.charAt(i + p[i] + 1) == T.charAt(i - p[i] - 1)) {
    						p[i]++;
    					}
    					C = i;
    					R = i + p[i];
    				}
    			} else {
    				p[i] = 0;
    				while (T.charAt(i + p[i] + 1) == T.charAt(i - p[i] - 1)) {
    					p[i]++;
    				}
    				C = i;
    				R = i + p[i];
    			}
    		}
    
    		int maxLen = 0;
    		int centerIndex = 0;
    		// 最大的索引
    		for (int i = 2; i < length - 1; i+=1) {
    			if (p[i] > maxLen) {
    				maxLen = p[i];
    				centerIndex = i;
    			}
    		}
    		// 计算起始地址
    		centerIndex = (centerIndex - 1 - maxLen) / 2;
    		return s.substring(centerIndex, centerIndex + maxLen);
    	}
    

      

  • 相关阅读:
    hdu 1863
    数据结构与算法分析–Minimum Spanning Tree(最小生成树)
    hdu 1856 More is better
    hdu 1272 小希的迷宫
    数据结构与算法分析 – Disjoint Set(并查集)
    数字逻辑电路课程设计报告
    高校成绩管理数据库系统的设计与实现
    PL/0编译器(java version) – SymbolTable.java
    [jquery]添加行内容后根据下拉菜单选择内容对比之前已有选项,若有重置再提示
    bootstrap-datetimepicker 日期控件的开始日期
  • 原文地址:https://www.cnblogs.com/hero4china/p/5982476.html
Copyright © 2011-2022 走看看