题目链接:点击打开链接
题意:给你一个串,让你在串后面添加尽可能少的字符使得这个串变成回文串。
思路:这题可以kmp,manacher,后缀数组三种方法都可以做,kmp和manacher效率较高,时间复杂度是O(n),后缀数组时间复杂度是O(nlogn).思路是求出元串的后缀和反串的前缀匹配的最大长度。用后缀数组的时候求出l=lcp(i,len+1),判断l+i是不是等于len,如果等于那么就是结果。
kmp:
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
#define lson th<<1
#define rson th<<1|1
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 1000600
char s1[maxn],s2[maxn];
int nextt[maxn],len;
int pd(char *s1,char *s2){
int i,j,len1,len2;
len1=len2=len;
i=0;j=-1;
memset(nextt,-1,sizeof(nextt));
while(i<len2){
if(j==-1 || s2[i]==s2[j]){
i++;
j++;
nextt[i]=j;
}
else j=nextt[j];
}
i=0;j=0;
int ans=1;
while(i<len1 && j<len2){
if(j==-1 || s1[i]==s2[j]){
//ans=max(ans,j+1); 注意这句不能加,因为要求的是当i=len1时候,串二最大匹配了多少长度
i++;
j++;
}
else j=nextt[j]; //这里要解释一下,这里的意思是s[i]和s[j]不匹配了,那么看前j个字符前缀和后缀匹配的程度,注意,这里前j个字符是s[0]...s[j-1]
}
ans=j;
return ans;
}
int main()
{
int n,m,i,j,ans;
while(scanf("%s",s1)!=EOF)
{
strcpy(s2,s1);
len=strlen(s1);
reverse(s2,s2+len);
ans=pd(s1,s2);
printf("%s",s1);
for(i=len-1-ans;i>=0;i--){
printf("%c",s1[i]);
}
printf("
");
}
return 0;
}
manacher:
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
#define lson th<<1
#define rson th<<1|1
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 100060
char s[maxn],ss[maxn*2]; //要开两倍大小
int p[maxn*2];
int main()
{
int n,m,i,j,mx,idx,maxx,len,len1;
while(scanf("%s",s)!=EOF)
{
len=strlen(s);
len1=len;
ss[0]='$';
ss[1]='#';
for(i=0;i<len;i++){
ss[i*2+2]=s[i];
ss[i*2+3]='#';
}
mx=0;maxx=0;
len=2*len+2;
int ans=inf;
for(i=1;i<len;i++){
if(mx>i){ //这里的mx为满足条件的后一个,这样如果i<=idx+p[i]-1就能比较了
p[i]=min(p[idx*2-i],mx-i);
}
else p[i]=1;
while(ss[i+p[i]]==ss[i-p[i]]){
p[i]++;
}
if(maxx<p[i])maxx=p[i];
if(mx<i+p[i]){ //这里更新的mx也是范围内的后一个
mx=i+p[i];
idx=i;
}
if(i+p[i]-1==len-1 ){
//printf("--->%d
",i);
ans=min(ans,(i-(p[i]-1)) /2 );
}
}
printf("%s",s);
for(i=ans-1;i>=0;i--){
printf("%c",s[i]);
}
printf("
");
//printf("%d
",ans);
}
return 0;
}
后缀数组:
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
#define lson th<<1
#define rson th<<1|1
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define M 100050
#define maxn 200050
char s1[M],s2[M];
int a[maxn];
int idx(char c){
if(c>='a' && c<='z')return c-'a'+1;
if(c>='A' && c<='Z')return c-'A'+1+26;
}
int sa[maxn];
int wa[maxn],wb[maxn],wv[maxn],we[maxn];
int rk[maxn],height[maxn];
int cmp(int *r,int a,int b,int l){
return r[a]==r[b]&&r[a+l]==r[b+l];
}
void build_sa(int *r,int n,int m)
{
int i,j,p,*x=wa,*y=wb,*t;
for(i=0;i<m;i++)we[i]=0;
for(i=0;i<n;i++)we[x[i]=r[i]]++;
for(i=1;i<m;i++)we[i]+=we[i-1];
for(i=n-1;i>=0;i--)sa[--we[x[i]]]=i;
for(j=1,p=1;p<n;j*=2,m=p){
for(p=0,i=n-j;i<n;i++)y[p++]=i;
for(i=0;i<n;i++)if(sa[i]>=j)y[p++]=sa[i]-j;
for(i=0;i<n;i++)wv[i]=x[y[i]];
for(i=0;i<m;i++)we[i]=0;
for(i=0;i<n;i++)we[wv[i]]++;
for(i=1;i<m;i++)we[i]+=we[i-1];
for(i=n-1;i>=0;i--)sa[--we[wv[i]]]=y[i];
for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1;i<n;i++)
x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
}
}
void calheight(int *r,int n)
{
int i,j,k=0;
for(i=1;i<=n;i++)rk[sa[i]]=i;
for(i=0;i<n;height[rk[i++] ]=k){
for(k?k--:0,j=sa[rk[i]-1];r[i+k]==r[j+k];k++);
}
}
int minx[200100][30];
void init_rmq(int n)
{
int i,j;
for(i=1;i<=n;i++)minx[i][0]=height[i];
for(j=1;j<=20;j++){
for(i=1;i<=n;i++){
if(i+(1<<j)-1<=n)
{
minx[i][j]=min(minx[i][j-1],minx[i+(1<<(j-1))][j-1]);
}
}
}
}
int lcp(int l,int r)
{
int k,i;
l=rk[l];r=rk[r];
if(l>r)swap(l,r);
l++;
k=(log((r-l+1)*1.0)/log(2.0));
return min(minx[l][k],minx[r-(1<<k)+1][k]);
}
int main()
{
int n,m,i,j,len,l;
while(scanf("%s",s1)!=EOF)
{
strcpy(s2,s1);
len=strlen(s1);
reverse(s2,s2+len);
n=0;
for(i=0;i<len;i++){
a[n++]=idx(s1[i]);
}
a[n++]=55;
for(i=0;i<len;i++){
a[n++]=idx(s2[i]);
}
a[n]=0;
build_sa(a,n+1,60);
calheight(a,n);
init_rmq(n);
for(i=0;i<len;i++){
l=lcp(i,len+1);
if(i+l==len)break;
}
printf("%s",s1);
for(i=len-1-l;i>=0;i--){
printf("%c",s1[i]);
}
printf("
");
}
return 0;
}