zoukankan      html  css  js  c++  java
  • poj2443Set Operation (bitset)

    Description

    You are given N sets, the i-th set (represent by S(i)) have C(i) element (Here "set" isn't entirely the same as the "set" defined in mathematics, and a set may contain two same element). Every element in a set is represented by a positive number from 1 to 10000. Now there are some queries need to answer. A query is to determine whether two given elements i and j belong to at least one set at the same time. In another word, you should determine if there exist a number k (1 <= k <= N) such that element i belongs to S(k) and element j also belong to S(k).

    Input

    First line of input contains an integer N (1 <= N <= 1000), which represents the amount of sets. Then follow N lines. Each starts with a number C(i) (1 <= C(i) <= 10000), and then C(i) numbers, which are separated with a space, follow to give the element in the set (these C(i) numbers needn't be different from each other). The N + 2 line contains a number Q (1 <= Q <= 200000), representing the number of queries. Then follow Q lines. Each contains a pair of number i and j (1 <= i, j <= 10000, and i may equal to j), which describe the elements need to be answer.

    Output

    For each query, in a single line, if there exist such a number k, print "Yes"; otherwise print "No".

    Sample Input

    3
    3 1 2 3
    3 1 2 5
    1 10
    4
    1 3
    1 5
    3 5
    1 10
    

    Sample Output

    Yes
    Yes
    No
    

    No

    题意:有n个集合,每个集合里有c[i]个数,可能重复,共有m个操作,每个操作询问两个数,问这两个数是否在n个集合中的某一个同时出现。

    思路:一开始标记每一个集合中出现的数,然后O(n*m)的复杂度T了,换了bitset的思路,即用bitset<1005>bt[10005]记录第i个元素在第j个集合出现的情况,然后对于任意两个数a,b,只要用(bt[a]&bt[b]).any()判断一下是否出现过就行。

    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<vector>
    #include<map>
    #include<set>
    #include<queue>
    #include<stack>
    #include<string>
    #include<algorithm>
    #include<bitset>
    #define inf 99999999
    #define pi acos(-1.0)
    #define maxn 1005
    #define MOD 1000000007
    using namespace std;
    typedef long long ll;
    typedef long double ldb;
    bitset<1005>bt[10005];
    
    int main()
    {
        int n,m,i,j,c,d;
        while(scanf("%d",&n)!=EOF)
        {
            for(i=1;i<=10000;i++)bt[i].reset();
            for(i=1;i<=n;i++){
                scanf("%d",&c);
                for(j=1;j<=c;j++){
                    scanf("%d",&d);
                    bt[d][i]=1;
                }
            }
            scanf("%d",&m);
            for(i=1;i<=m;i++){
                scanf("%d%d",&c,&d);
                if((bt[c]&bt[d]).any() )printf("Yes
    ");
                else printf("No
    ");
    
            }
        }
        return 0;
    }
    


  • 相关阅读:
    【python】Excel从源表提取相应信息到目标表格
    Vue.config.productionTip 关闭生产提示
    [elementui]多行confirm
    [vue]防抖(debounce) 和 节流(throttling)
    C#的面向对象之继承与多态
    C#中接口与抽象类
    为iPhone开发iPad风格的弹出窗口
    新闻资讯APP开发流程(五) MainView.js
    titanium开发实例社交APP一之登录窗口
    titanium开发实例社交APP二之注册窗口
  • 原文地址:https://www.cnblogs.com/herumw/p/9464533.html
Copyright © 2011-2022 走看看