zoukankan      html  css  js  c++  java
  • hdu4028 The time of a day (map+dp)

    Problem Description
    There are no days and nights on byte island, so the residents here can hardly determine the length of a single day. Fortunately, they have invented a clock with several pointers. They have N pointers which can move round the clock. Every pointer ticks once per second, and the i-th pointer move to the starting position after i times of ticks. The wise of the byte island decide to define a day as the time interval between the initial time and the first time when all the pointers moves to the position exactly the same as the initial time.
    The wise of the island decide to choose some of the N pointers to make the length of the day greater or equal to M. They want to know how many different ways there are to make it possible.
     

    Input
    There are a lot of test cases. The first line of input contains exactly one integer, indicating the number of test cases.
      For each test cases, there are only one line contains two integers N and M, indicating the number of pointers and the lower bound for seconds of a day M. (1 <= N <= 40, 1 <= M <= 263-1)
     

    Output
    For each test case, output a single integer denoting the number of ways.
     

    Sample Input
    3 5 5 10 1 10 128
     

    Sample Output
    Case #1: 22 Case #2: 1023 Case #3: 586
     
    题意:给你n个数,这n个数的大小为1~n,让你从中挑出一些数,使得这些数的最小公倍数大于等于m,求挑选的方案数。
    思路:因为数的最小公倍数很大,所以不好dp,但是我们打表可以发现不同最小公倍数的总数量不是很大,所以我们用map<ll,ll>dp[50]来表示前i个数中挑选出的数的最小公倍数的值为j的方案数。

    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<vector>
    #include<map>
    #include<set>
    #include<queue>
    #include<stack>
    #include<string>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    typedef long double ldb;
    #define inf 99999999
    #define pi acos(-1.0)
    ll gcd(ll a,ll b){
        return (b>0)?gcd(b,a%b):a;
    }
    
    ll cal(ll x,ll y)
    {
        ll num;
        num=gcd(x,y);
        return x*y/num;
    
    }
    map<ll,ll>dp[50];
    map<ll,ll>::iterator it;
    
    void init()
    {
        int i,j;
        for(i=1;i<=40;i++)dp[i].clear();
        dp[1][1]=1;
        for(i=2;i<=40;i++){
            for(it=dp[i-1].begin();it!=dp[i-1].end();it++){
                dp[i][it->first]+=it->second;
                dp[i][cal(it->first,i) ]+=it->second;
            }
            dp[i][i]+=1;
        }
    }
    
    int main()
    {
        int i,j,T,cas=0;;
        ll n,m;
        init();
        scanf("%d",&T);
        while(T--)
        {
            scanf("%lld%lld",&n,&m);
            ll sum=0;
            for(it=dp[n].lower_bound(m);it!=dp[n].end();it++){
               if(it->first>=m)
               sum+=(it->second);
            }
            cas++;
            printf("Case #%d: %lld
    ",cas,sum);
        }
        return 0;
    }


  • 相关阅读:
    mysql详解9:触发器和事件
    mysql详解7:视图
    mysql详解6:字符串函数 日期函数 IF CASE
    mysql详解5:复杂查询
    [转]Kubernetes网络组件之Calico策略实践(BGP、RR、IPIP)
    Springcloud 学习笔记05-Mybatis-Plus
    Git学习笔记04--tortoisegit的clone、pull、commit操作、分支的新增、合并、删除
    Git学习笔记03--Git客户端(TortoiseGit)安装与基本使用
    Java 项目bug记录过程--Failed to configure a DataSource
    TiDB学习笔记02-场景案例综述
  • 原文地址:https://www.cnblogs.com/herumw/p/9464543.html
Copyright © 2011-2022 走看看