zoukankan      html  css  js  c++  java
  • codeforces622E Ants in Leaves (dfs)

    Description
    Tree is a connected graph without cycles. A leaf of a tree is any vertex connected with exactly one other vertex.


    You are given a tree with n vertices and a root in the vertex 1. There is an ant in each leaf of the tree. In one second some ants can simultaneously go to the parent vertex from the vertex they were in. No two ants can be in the same vertex simultaneously except for the root of the tree.


    Find the minimal time required for all ants to be in the root of the tree. Note that at start the ants are only in the leaves of the tree.


    Input
    The first line contains integer n (2 ≤ n ≤ 5·105) — the number of vertices in the tree.


    Each of the next n - 1 lines contains two integers xi, yi (1 ≤ xi, yi ≤ n) — the ends of the i-th edge. It is guaranteed that you are given the correct undirected tree.


    Output
    Print the only integer t — the minimal time required for all ants to be in the root of the tree.


    Sample Input
    Input
    12
    1 2
    1 3
    1 4
    2 5
    2 6
    3 7
    3 8
    3 9
    8 10
    8 11
    8 12
    Output
    6
    Input
    2
    2 1
    Output

    1

    题意:给你一棵节点数为n的树,每一个叶子节点上有一只蚂蚁,每一秒树上的蚂蚁都可以走到父亲节点的位置,但是每一个节点(除根节点)最多只能有一只蚂蚁,问最少需要花费的时间。

    思路:一定是先让深度小的蚂蚁走到根节点,因为如果有深度大的比深度低的先走到根节点,那么深度低的可能要先等深度大的,而自己没有走,但如果深度低的先走的话,那么深度大的和小的可以一起往根节点走,这样可以在相同的时间走更多的总步数。所以我们算出根节点下的每一个子树走完所要花的最大时间,然后更新答案就行。那么每一棵子树所要花的时间为t[i]=max(t[i-1]+1,deep[t]),即前面一个走到根节点的时间+1与其深度的较大值。


    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<vector>
    #include<map>
    #include<set>
    #include<queue>
    #include<stack>
    #include<string>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    #define inf 99999999
    #define pi acos(-1.0)
    #define maxn 500050
    vector<int>pos[maxn];
    vector<int>::iterator it;
    int a[maxn],tot,vis[maxn];
    void dfs(int u,int father,int deep)
    {
        int i,j;
        vis[u]=1;
        if(pos[u].size()==1){
            tot++;a[tot]=deep;
            return;
        }
        for(i=0;i<pos[u].size();i++){
            if(father!=pos[u][i] ){
                dfs(pos[u][i],u,deep+1 );
            }
        }
    }
    int main()
    {
        int n,m,i,j,ans,c,d,len;
        while(scanf("%d",&n)!=EOF)
        {
            for(i=1;i<=n;i++)pos[i].clear();
            for(i=1;i<=n-1;i++){
                scanf("%d%d",&c,&d);
                pos[c].push_back(d);
                pos[d].push_back(c);
            }
            len=pos[1].size();
            ans=0;
            for(i=0;i<len;i++){
                tot=0;
                dfs(pos[1][i],1,1);
                sort(a+1,a+1+tot);
                a[0]=0;
                for(j=1;j<=tot;j++){
                    a[j]=max(a[j-1]+1,a[j]);
                }
                ans=max(ans,a[tot]);
            }
            printf("%d
    ",ans);
        }
        return 0;
    }
    


  • 相关阅读:
    day02_接口测试流程
    day01_接口测试常识丶HTTP协议
    day03_元素操作丶浏览器操作方法丶鼠标操作
    day05_数组
    day04_运算符
    day03_数据类型丶字符编码丶基本数据类型转换
    day02_注释丶关键字丶标识符丶常量丶变量
    day04_数据序列之字符串
    day03_流程控制语句
    day02_输入数据丶数据类型转换丶运算符
  • 原文地址:https://www.cnblogs.com/herumw/p/9464552.html
Copyright © 2011-2022 走看看