zoukankan      html  css  js  c++  java
  • codeforces 86D D. Powerful array

    An array of positive integers a1, a2, ..., an is given. Let us consider its arbitrary subarray al, al + 1..., ar, where 1 ≤ l ≤ r ≤ n. For every positive integer s denote by Ks the number of occurrences of s into the subarray. We call the power of the subarray the sum of productsKs·Ks·s for every positive integer s. The sum contains only finite number of nonzero summands as the number of different values in the array is indeed finite.

    You should calculate the power of t given subarrays.

    Input

    First line contains two integers n and t (1 ≤ n, t ≤ 200000) — the array length and the number of queries correspondingly.

    Second line contains n positive integers ai (1 ≤ ai ≤ 106) — the elements of the array.

    Next t lines contain two positive integers lr (1 ≤ l ≤ r ≤ n) each — the indices of the left and the right ends of the corresponding subarray.

    Output

    Output t lines, the i-th line of the output should contain single positive integer — the power of the i-th query subarray.

    Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preferred to use cout stream (also you may use%I64d).

    Sample test(s)
    input
    3 2
    1 2 1
    1 2
    1 3
    
    output
    3
    6
    
    input
    8 3
    1 1 2 2 1 3 1 1
    2 7
    1 6
    2 7
    
    output
    20
    20
    

    20

    这题也是用莫队算法,类型和前面小Z的袜子基本一样。

    #include <cstdio>
    #include <iostream>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    struct Query
    {
        int id, l, r;
        long long ans;
    };
    
    const int MAXN = 200010;
    const int MAXNUM = 1000010;
    int n, m, sqrtn;
    int c[MAXN], num[MAXNUM];
    Query q[MAXN];
    
    int gcd(int a, int b)
    {
        return b == 0 ? a : gcd(b, a % b);
    }
    
    bool cmplr(const Query &a, const Query &b)
    {
        if (a.l / sqrtn == b.l / sqrtn) return a.r < b.r;
        else return a.l < b.l;
    }
    
    bool cmpid(const Query &a, const Query &b)
    {
        return a.id < b.id;
    }
    
    int main()
    {
        scanf("%d%d", &n, &m);
        sqrtn = (int)sqrt(n);
        memset(num, 0, sizeof(num));
        for (int i = 1; i <= n; i++)
            scanf("%d", &c[i]);
        for (int i = 0; i < m; i++)
        {
            q[i].id = i;
            scanf("%d%d", &q[i].l, &q[i].r);
        }
        sort(q, q + m, cmplr);
        int l = 1, r = 1;
        long long ans = c[1];
        num[c[1]]++;
        for (int i = 0; i < m; i++)
        {
            while (r < q[i].r)
            {
                r++;
                ans -= (long long)num[c[r]] * num[c[r]] * c[r];
                num[c[r]]++;
                ans += (long long)num[c[r]] * num[c[r]] * c[r];
            }
            while (l < q[i].l)
            {
                ans -= (long long)num[c[l]] * num[c[l]] * c[l];
                num[c[l]]--;
                ans += (long long)num[c[l]] * num[c[l]] * c[l];
                l++;
            }
            while (l > q[i].l)
            {
                l--;
                ans -= (long long)num[c[l]] * num[c[l]] * c[l];
                num[c[l]]++;
                ans += (long long)num[c[l]] * num[c[l]] * c[l];
            }
            while (r > q[i].r)
            {
                ans -= (long long)num[c[r]] * num[c[r]] * c[r];
                num[c[r]]--;
                ans += (long long)num[c[r]] * num[c[r]] * c[r];
                r--;
            }
            q[i].ans = ans;
        }
        sort(q, q + m, cmpid);
        for (int i = 0; i < m; i++)
            cout << q[i].ans << "
    ";
        return 0;
    }
    	 	 


  • 相关阅读:
    MPI 学习
    关于谱聚类
    线程调度的学习例子
    [转] Linux的IO复用
    网络编程socket
    关于python机器学习常用算法的例子
    [转](阿里笔试)使用多线程和sleep函数生成字符串的伪随机排列
    Single Number II
    阿里面试题,N个士兵的通话问题
    凸优化算法之牛顿法
  • 原文地址:https://www.cnblogs.com/herumw/p/9464574.html
Copyright © 2011-2022 走看看