zoukankan      html  css  js  c++  java
  • zoj1074 To the Max

    Problem

    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

    As an example, the maximal sub-rectangle of the array:

    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2

    is in the lower left corner:

    9 2
    -4 1
    -1 8

    and has a sum of 15.

    The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].


    Output

    Output the sum of the maximal sub-rectangle.


    Example

    Input

    4
    0 -2 -7 0 9 2 -6 2
    -4 1 -4 1 -1
    8 0 -2

    Output

    15 

    这题是序列最大和的升级版,我们可以枚举两行p,q,然后把p,q行每一列的元素的和都加起来,放到sum[]这个数组中,然后求出sum[]数组的序列最大和就行了。复杂度是O(n^3).

    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<vector>
    #include<map>
    #include<set>
    #include<queue>
    #include<stack>
    #include<string>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    #define inf 99999999
    #define pi acos(-1.0)
    #define maxn 106
    ll a[maxn][maxn],sum[maxn];
    ll f(ll c[],ll n)
    {
        ll i,j;
        ll b[maxn];
        b[0]=-inf;
        ll maxx=-inf;
        for(i=1;i<=n;i++){
            b[i]=max(c[i],b[i-1]+c[i]);
            maxx=max(maxx,b[i]);
        }
        return maxx;
    }
    
    
    
    
    int main()
    {
        ll n,m,i,j,maxx,k;
        while(scanf("%lld",&n)!=EOF)
        {
            for(i=1;i<=n;i++){
                for(j=1;j<=n;j++){
                    scanf("%lld",&a[i][j]);
                }
            }
            maxx=-inf;
            for(i=1;i<=n;i++){
                memset(sum,0,sizeof(sum));
                for(j=i;j<=n;j++){
                    for(k=1;k<=n;k++){
                        sum[k]+=a[j][k];
                    }
                    maxx=max(maxx,f(sum,n));
                }
    
            }
            printf("%lld
    ",maxx);
        }
        return 0;
    }
    


  • 相关阅读:
    OBJC依赖库管理利器cocoapods 安装及使用详细图解
    OBJC依赖库管理利器cocoapods 安装及使用详细图解
    Parse-轻松构建移动APP的后台服务
    Parse-轻松构建移动APP的后台服务
    Parse:App开发必备 让应用开发效率提高上百倍
    Responder对象
    Responder对象
    iOS UIWebView获取403/404
    Python基本语法_基本数据类型_数值型详解
    Openstack贡献者须知 — OpenPGP/SSH/CLA贡献者协议
  • 原文地址:https://www.cnblogs.com/herumw/p/9464604.html
Copyright © 2011-2022 走看看