zoukankan      html  css  js  c++  java
  • poj1947 Rebuilding Roads

    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions: 10297   Accepted: 4701

    Description

    The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, number 1..N) after the terrible earthquake last May. The cows didn't have time to rebuild any extra roads, so now there is exactly one way to get from any given barn to any other barn. Thus, the farm transportation system can be represented as a tree. 

    Farmer John wants to know how much damage another earthquake could do. He wants to know the minimum number of roads whose destruction would isolate a subtree of exactly P (1 <= P <= N) barns from the rest of the barns.

    Input

    * Line 1: Two integers, N and P 

    * Lines 2..N: N-1 lines, each with two integers I and J. Node I is node J's parent in the tree of roads. 

    Output

    A single line containing the integer that is the minimum number of roads that need to be destroyed for a subtree of P nodes to be isolated. 

    Sample Input

    11 6
    1 2
    1 3
    1 4
    1 5
    2 6
    2 7
    2 8
    4 9
    4 10
    4 11
    

    Sample Output

    2

    Hint

    [A subtree with nodes (1, 2, 3, 6, 7, 8) will become isolated if roads 1-4 and 1-5 are destroyed.] 


    题意:给你一棵n个节点树,让你割断几条边得到一棵m个节点的树,问最少要割断几条边。

    思路:可以用树形背包做,用dp[i][j]表示以i为根节点,其子树要达到j个节点所要割断的最小边数(其中得到的子树中i为根节点),

    那么对于它的每一个子树,有两种情况,一种是直接割断,那么dp[u][j]=dp[u][j]+1,第二种是不割断,那么dp[u][j]=min{dp[u][j],dp[u][j-k]+dp[v][k]};


    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<vector>
    #include<map>
    #include<set>
    #include<queue>
    #include<stack>
    #include<string>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    #define inf 99999999
    #define maxn 152
    int dp[maxn][maxn],vis[maxn],first[maxn],num[maxn];
    struct node{
        int to,next;
    }e[2*maxn];
    int n,m;
    
    
    void dfs(int u)
    {
        int i,j,v,flag=0,k;
        vis[u]=1;
        for(i=first[u];i!=-1;i=e[i].next){
            v=e[i].to;
            if(vis[v])continue;
            flag=1;
            dfs(v);
            for(j=m;j>=1;j--){
                dp[u][j]=dp[u][j]+1;
                for(k=num[v];k>=1;k--){ //这里也可以写成for(k=j-1;k>=1;k--),大多数题解都是从j-1开始,还以为不能用子节点的个数做,后来发现是子节点的个数算错了= =
                    if(j>k)
                        dp[u][j]=min(dp[u][j],dp[u][j-k]+dp[v][k] );
                }
            }
            num[u]+=num[v]; //num[i]表示以i为根节点的子节点的个数
        }
        num[u]++;
        if(flag==0){
            dp[u][1]=0;
        }
    }
    
    
    int main()
    {
        int i,j,T,c,d,tot;
        while(scanf("%d%d",&n,&m)!=EOF)
        {
            tot=0;
            memset(first,-1,sizeof(first));
            for(i=1;i<=n-1;i++){
                scanf("%d%d",&c,&d);
                tot++;
                e[tot].next=first[c];e[tot].to=d;
                first[c]=tot;
    
                tot++;
                e[tot].next=first[d];e[tot].to=c;
                first[d]=tot;
    
            }
            memset(vis,0,sizeof(vis));
            memset(num,0,sizeof(num));
            for(i=1;i<=n;i++){
                dp[i][1]=0;
                for(j=2;j<=m;j++){
                    dp[i][j]=inf;
                }
            }
            dfs(1);
            int ans=dp[1][m];
            for(i=2;i<=n;i++){
                ans=min(ans,dp[i][m]+1);
            }
            printf("%d
    ",ans);
        }
        return 0;
    }
    


  • 相关阅读:
    Atitit. 真正的全中国文字attilax易语言的特点以及范例
    Atitit.nosql api 标准化 以及nosql数据库的实现模型分类差异
    Google&quot;员工&quot;曝内幕:Google员工的17个秘密
    WINDOWS 乱码解决
    计算机软件开发文档编写指南
    概要设计阶段概要设计说明书
    关于管理的经典故事(员工激励)
    概要设计阶段组装测试计划
    一个还不太老的程序员的体会
    程序员四大忌 你该如何避免呢?
  • 原文地址:https://www.cnblogs.com/herumw/p/9464629.html
Copyright © 2011-2022 走看看