You are given a sequence of n integers a1, a2, ..., an.
Determine a real number x such that the weakness of the sequence a1 - x, a2 - x, ..., an - x is as small as possible.
The weakness of a sequence is defined as the maximum value of the poorness over all segments (contiguous subsequences) of a sequence.
The poorness of a segment is defined as the absolute value of sum of the elements of segment.
The first line contains one integer n (1 ≤ n ≤ 200 000), the length of a sequence.
The second line contains n integers a1, a2, ..., an (|ai| ≤ 10 000).
Output a real number denoting the minimum possible weakness of a1 - x, a2 - x, ..., an - x. Your answer will be considered correct if its relative or absolute error doesn't exceed 10 - 6.
3 1 2 3
1.000000000000000
4 1 2 3 4
2.000000000000000
10 1 10 2 9 3 8 4 7 5 6
4.500000000000000
For the first case, the optimal value of x is 2 so the sequence becomes - 1, 0, 1 and the max poorness occurs at the segment "-1" or segment "1". The poorness value (answer) equals to 1 in this case.
For the second sample the optimal value of x is 2.5 so the sequence becomes - 1.5, - 0.5, 0.5, 1.5 and the max poorness occurs on segment "-1.5 -0.5" or "0.5 1.5". The poorness value (answer) equals to 2 in this case.
这题可以用三分,但是在三分判断条件的时候要注意,用循环限定次数比较好,因为double精度不够高。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define ll long long
#define inf 99999999
#define maxn 200060
#define eps 1e-10
int n;
double a[maxn],b[maxn],sum1[maxn],sum2[maxn],c[maxn];
double cal(double x)
{
int i,j,f;
double maxnum=0;
sum1[0]=sum2[0]=0;
for(i=1;i<=n;i++){
b[i]=a[i]-x;
sum1[i]=max(b[i],sum1[i-1]+b[i]);maxnum=max(maxnum,sum1[i]);
c[i]=x-a[i];
sum2[i]=max(c[i],sum2[i-1]+c[i]);maxnum=max(maxnum,sum2[i]);
}
return maxnum;
}
int main()
{
int m,i,j;
double l,r,m1,m2,minx,maxx;
while(scanf("%d",&n)!=EOF)
{
for(i=1;i<=n;i++){
scanf("%lf",&a[i]);
}
l=-10005;r=10005;
for(i=0;i<100;i++){
double d=(l+r)/2.0;
m1=d;
m2=(d+r)/2.0;
if(cal(m2)-cal(m1)>=0){
r=m2;
}
else l=m1;
}
printf("%.9f
",cal(l));
}
return 0;
}