zoukankan      html  css  js  c++  java
  • poj1141 Brackets Sequence

    Description

    Let us define a regular brackets sequence in the following way: 

    1. Empty sequence is a regular sequence. 
    2. If S is a regular sequence, then (S) and [S] are both regular sequences. 
    3. If A and B are regular sequences, then AB is a regular sequence. 

    For example, all of the following sequences of characters are regular brackets sequences: 

    (), [], (()), ([]), ()[], ()[()] 

    And all of the following character sequences are not: 

    (, [, ), )(, ([)], ([(] 

    Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.

    Input

    The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.

    Output

    Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.

    Sample Input

    ([(]

    Sample Output

    ()[()]

    题意:给你一个含括号的字符串,问你最小添加多少括号能使这个字符串的括号完全匹配。可以记录dp[i][j]为区间[i,j]中所有括号全部匹配需要的最少括号数,c[i][j]表示区间[i,j]中断开的坐标,便于待会递归输出。当i==j时,c[i][j]=-1,dp[i][j]=1;当str[i]==str[j]时,dp[i][j]=dp[i+1][j-1];再进行状态转移方程dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]).同时更新c[i][j].


    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<vector>
    #include<map>
    #include<set>
    #include<queue>
    #include<stack>
    #include<string>
    #include<algorithm>
    using namespace std;
    #define inf 99999999
    int dp[106][106],c[106][106];
    char str[106];
    int ok(char a,char b){
        if( (a=='('&&b==')') || (a=='[' && b==']'))return 1;
        return 0;
    }
    
    void shuchu(int l,int r)
    {
        int i,j;
        if(l>r)return;
        if(l==r){
            if(str[l]=='(' || str[l]==')')printf("()");
            else printf("[]");
            return;
        }
        if(c[l][r]!=-1){
            shuchu(l,c[l][r]);
            shuchu(c[l][r]+1,r);
            return;
        }
        else{
            if(str[l]=='('){
                printf("(");
                shuchu(l+1,r-1);
                printf(")");
            }
            else{
                printf("[");
                shuchu(l+1,r-1);
                printf("]");
            }
            return;
        }
    }
    
    int main()
    {
        int n,m,i,j,len,len1,k,l,r;
        while(gets(str)>0)
        {
            memset(c,-1,sizeof(c));
            len1=strlen(str);
            for(i=0;i<len1;i++){
                dp[i][i]=1;
            }
            for(i=0;i<len1-1;i++){
                if(ok(str[i],str[i+1]))dp[i][i+1]=0;
                else {
                    dp[i][i+1]=2;
                    c[i][i+1]=i;
                }
            }
            for(len=3;len<=len1;len++){
                for(i=0;i+len-1<len1;i++){
                    j=i+len-1;
                    dp[i][j]=inf;
                    if(ok(str[i],str[j])){
                        dp[i][j]=dp[i+1][j-1];
                        c[i][j]=-1;
                    }
    
                    for(k=i;k<j;k++){
                        if(dp[i][j]>dp[i][k]+dp[k+1][j]){
                            dp[i][j]=dp[i][k]+dp[k+1][j];
                            c[i][j]=k;
                        }
                    }
                }
            }
            shuchu(0,len1-1);
            printf("
    ");
        }
        return 0;
    }
    


  • 相关阅读:
    二叉排序树(BST)创建,删除,查找操作
    Android中利用AIDL机制调用远程服务
    Android Studio更新升级方法
    C语言+ODBC+SQL 操作(向SQL里面添加数据)
    C语言+ODBC+SQL 连接
    macOS下 java+selenium+firefox 环境搭建
    php 上传二进制流图片 转存到图片格式 本地
    『工作の技术』突然想到的一些问题
    通过MySQL存储原理来分析排序和锁
    解析阿里开源混沌工程工具ChaosBlade是什么?
  • 原文地址:https://www.cnblogs.com/herumw/p/9464679.html
Copyright © 2011-2022 走看看