zoukankan      html  css  js  c++  java
  • hdu5305 Friends

    Problem Description
    There are n people and m pairs of friends. For every pair of friends, they can choose to become online friends (communicating using online applications) or offline friends (mostly using face-to-face communication). However, everyone in these n people wants to have the same number of online and offline friends (i.e. If one person has x onine friends, he or she must have x offline friends too, but different people can have different number of online or offline friends). Please determine how many ways there are to satisfy their requirements. 
     

    Input
    The first line of the input is a single integer T (T=100), indicating the number of testcases. 

    For each testcase, the first line contains two integers n (1n8) and m (0mn(n1)2), indicating the number of people and the number of pairs of friends, respectively. Each of the next m lines contains two numbers x and y, which mean x and y are friends. It is guaranteed that xy and every friend relationship will appear at most once. 
     

    Output
    For each testcase, print one number indicating the answer.
     

    Sample Input
    2 3 3 1 2 2 3 3 1 4 4 1 2 2 3 3 4 4 1
     

    Sample Output
    0

    2

    这题是一道简单搜索题,我用dfs(idx,num1,num2)表示当前搜索的是idx的关系,num1表示虚拟关系的个数,num2表示现实关系的个数。

    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<vector>
    #include<map>
    #include<set>
    #include<queue>
    #include<stack>
    #include<string>
    #include<algorithm>
    using namespace std;
    #define maxn 100060
    #define ll long long
    int num[10],gra[10][10],n,m,sum,guanxi[10][10],vis1[10],vis2[10];
    
    void dfs(int idx,int num1,int num2,int pos,int from)
    {
        int i,j;
        if(num1==num2 && num1+num2==num[idx]){
            if(idx==n){
                sum++;return;
            }
            else{
                idx++;num1=num2=0;
                for(i=1;i<=n;i++){
                   if(guanxi[idx][i]==1){
                       num2++;
                   }
                   else if(guanxi[idx][i]==0){
                       num1++;
                   }
                }
                dfs(idx,num1,num2,idx+1,0);
            }
            return ;
        }
    
        if(num1>num[idx]/2 || num2>num[idx]/2)return;
        for(i=pos;i<=n;i++){
            if(gra[i][idx] && guanxi[i][idx]==-1){
                guanxi[i][idx]=guanxi[idx][i]=0;
                dfs(idx,num1+1,num2,i+1,1);
                guanxi[i][idx]=guanxi[idx][i]=1;
                dfs(idx,num1,num2+1,i+1,2);
                guanxi[i][idx]=guanxi[idx][i]=-1;break;
            }
        }
        return;
    }
    
    int main()
    {
            int i,j,T,c,d,flag;
            scanf("%d",&T);
            while(T--)
            {
                scanf("%d%d",&n,&m);
                if(n==1){
                    printf("1
    ");continue;
                }
                memset(num,0,sizeof(num));
                memset(gra,0,sizeof(gra));
                for(i=1;i<=m;i++){
                    scanf("%d%d",&c,&d);
                    gra[c][d]=gra[d][c]=1;num[c]++;num[d]++;
                }
                flag=1;
                for(i=1;i<=n;i++){
                    if(num[i]&1){
                        flag=0;break;
                    }
                }
                if(!flag){
                    printf("0
    ");continue;
                }
                sum=0;
                memset(guanxi,-1,sizeof(guanxi));
                dfs(1,0,0,2,0);
                printf("%d
    ",sum);
            }
            return 0;
    }
    


  • 相关阅读:
    剑指offer11-二进制中1的个数
    剑指offer10-矩形覆盖
    剑指offer08-跳台阶
    剑指offer07-斐波那契数列
    剑指offer04-重建二叉树
    剑指offer62-二叉搜索树的第k个结点
    kimball维度建模(5)-拉链表原理、设计以及在Hive中的实现
    kimball维度建模(4)-统一数仓层DW与事实表设计
    C-宏定义
    lua-设计与实现-8环境与模块
  • 原文地址:https://www.cnblogs.com/herumw/p/9464686.html
Copyright © 2011-2022 走看看