zoukankan      html  css  js  c++  java
  • hdu5386 Cover

    Problem Description
    You have an nn matrix.Every grid has a color.Now there are two types of operating:
    L x y: for(int i=1;i<=n;i++)color[i][x]=y;
    H x y:for(int i=1;i<=n;i++)color[x][i]=y;
    Now give you the initial matrix and the goal matrix.There are m operatings.Put in order to arrange operatings,so that the initial matrix will be the goal matrix after doing these operatings

    It's guaranteed that there exists solution.
     

    Input
    There are multiple test cases,first line has an integer T
    For each case:
    First line has two integer n,m
    Then n lines,every line has n integers,describe the initial matrix
    Then n lines,every line has n integers,describe the goal matrix
    Then m lines,every line describe an operating

    1color[i][j]n
    T=5
    1n100
    1m500
     

    Output
    For each case,print a line include m integers.The i-th integer x show that the rank of x-th operating is i
     

    Sample Input
    1 3 5 2 2 1 2 3 3 2 1 3 3 3 3 3 3 3 3 3 3 H 2 3 L 2 2 H 3 3 H 1 3 L 2 3
     

    Sample Output
    5 2 4 3 1

    这题看了题解后,感觉挺水的。。因为保证有解,所以可以从后面往前推,遇到整行的颜色和其中没有访问过的一个操作一样的时候,就把这一行的数都变为0(即任意颜色,因为前面的颜色会被后面的覆盖),当矩阵全部为0就输出结果。这里如果用set存储的话注意操作符的定义,因为如果定义为x或者y间的比较,可能会把一些相同的操作删除掉,导致WA.

    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<vector>
    #include<map>
    #include<set>
    #include<queue>
    #include<stack>
    #include<string>
    #include<algorithm>
    using namespace std;
    int gra[106][106],c[600];
    struct node{
    	int f,x,y,idx;
    }b,temp;
    bool operator <(node a,node b){
    	return a.idx<b.idx;
    }
    
    set<node>myset;
    set<node>::iterator it;
    
    int main()
    {
    	int n,m,i,j,T,sum,a,x,y,tot,flag,f,t,flag1,idx,num1;
    	char s[10];
    	scanf("%d",&T);
    	while(T--)
    	{
    		scanf("%d%d",&n,&m);
    		sum=n*n;
    		for(i=1;i<=n;i++){
    			for(j=1;j<=n;j++){
    				scanf("%d",&a);
    			}
    		}
    		for(i=1;i<=n;i++){
    			for(j=1;j<=n;j++){
    				scanf("%d",&gra[i][j]);
    			}
    		}
    		myset.clear();
    		for(i=1;i<=m;i++){
    			scanf("%s%d%d",s,&x,&y);
                if(s[0]=='L'){
                	b.f=1;
                }
                else b.f=0;
                b.x=x;b.y=y;b.idx=i;
                myset.insert(b);
    		}
    		t=0;
    		while(1)
    		{
    			//if(myset.size()==0)break;// || sum==0
    			if(sum==0)break;
    			flag=0;
    			for(it=myset.begin();it!=myset.end();it++){
    				temp=*it;
    				x=temp.x;y=temp.y;f=temp.f;idx=temp.idx;
    				if(f==1){
    					flag1=1;tot=0;
    					for(i=1;i<=n;i++){
    						if(gra[i][x]==0)continue;
    						if(gra[i][x]==y)tot++;
    						else{
    							flag1=0;break;
    						}
    					}
    					if(tot==0 || flag1==0)continue;
    					
    					flag=1;
    					for(i=1;i<=n;i++){
    						if(gra[i][x]==0)continue;
    						else {gra[i][x]=0;sum--;}
    					}
    					t++;c[t]=idx;
    					myset.erase(it);break;
    				}
    				
    				else if(f==0){
    					flag1=1;tot=0;
    					for(i=1;i<=n;i++){
    						if(gra[x][i]==0)continue;
    						if(gra[x][i]==y)tot++;
    						else{
    							flag1=0;break;
    						}
    					}
    					if(tot==0 || flag1==0)continue;
    					
    					flag=1;
    					for(i=1;i<=n;i++){
    						if(gra[x][i]==0)continue;
    						else {gra[x][i]=0;sum--;}
    					}
    					t++;c[t]=idx;
    					myset.erase(it);break;
    				}
    			}
    			if(!flag)break;
    		}
    		for(i=1;i<=m;i++){
    			flag=0;
    			for(j=1;j<=t;j++){
    				if(i==c[j]){
    					flag=1;break;
    				}
    			}
    			if(flag==0){
    				printf("%d ",i);
    			}
    		}
    		for(i=t;i>=1;i--){
    			if(i==1)printf("%d
    ",c[i]);
    			else printf("%d ",c[i]);
    		}
    	}
    	return 0;
    }
    /*
    100
    3 7
    2 2 1
    2 3 3
    2 1 3
    3 2 2
    1 1 2
    1 1 1
    L 2 3
    L 1 3
    H 2 1
    H 3 3
    L 4 3
    L 3 2
    H 3 1
    */


  • 相关阅读:
    Python入门day41——进程线程高阶
    使用React全家桶搭建一个后台管理系统
    基于 React 开发了一个 Markdown 文档站点生成工具
    The Annual Summary Of 2019
    INHERITED AND NON-INHERITED IN CSS
    组件设计 —— 重新认识受控与非受控组件
    React 现代化测试
    如何使页面交互更流畅
    React Hooks 深入系列
    你不知道的 requestIdleCallback
  • 原文地址:https://www.cnblogs.com/herumw/p/9464692.html
Copyright © 2011-2022 走看看