zoukankan      html  css  js  c++  java
  • poj1787 Charlie's Change

    Description

    Charlie is a driver of Advanced Cargo Movement, Ltd. Charlie drives a lot and so he often buys coffee at coffee vending machines at motorests. Charlie hates change. That is basically the setup of your next task. 

    Your program will be given numbers and types of coins Charlie has and the coffee price. The coffee vending machines accept coins of values 1, 5, 10, and 25 cents. The program should output which coins Charlie has to use paying the coffee so that he uses as many coins as possible. Because Charlie really does not want any change back he wants to pay the price exactly. 

    Input

    Each line of the input contains five integer numbers separated by a single space describing one situation to solve. The first integer on the line P, 1 <= P <= 10 000, is the coffee price in cents. Next four integers, C1, C2, C3, C4, 0 <= Ci <= 10 000, are the numbers of cents, nickels (5 cents), dimes (10 cents), and quarters (25 cents) in Charlie's valet. The last line of the input contains five zeros and no output should be generated for it.

    Output

    For each situation, your program should output one line containing the string "Throw in T1 cents, T2 nickels, T3 dimes, and T4 quarters.", where T1, T2, T3, T4 are the numbers of coins of appropriate values Charlie should use to pay the coffee while using as many coins as possible. In the case Charlie does not possess enough change to pay the price of the coffee exactly, your program should output "Charlie cannot buy coffee.".

    Sample Input

    12 5 3 1 2
    16 0 0 0 1
    0 0 0 0 0
    

    Sample Output

    Throw in 2 cents, 2 nickels, 0 dimes, and 0 quarters.
    

    Charlie cannot buy coffee.

    这题可以用多重背包,用dp[m][5]分别记录m价钱刚好能买到的物品个数的最大值,买1元,5元,10元,25元物品的个数。

    #include<stdio.h>
    #include<string.h>
    #define inf 88888888
    int max(int a,int b){
    	return a>b?a:b;
    }
    int w[10]={0,1,5,10,25},v[10]={1,1,1,1,1,1};
    int dp[10006][6];
    int main()
    {
    	int n,m,i,j,a,b,c,d,k,ans,sum;
    	int num[19];
    	while(scanf("%d%d%d%d%d",&m,&num[1],&num[2],&num[3],&num[4])!=EOF)
    	{
    		if(m+num[1]+num[2]+num[3]+num[4]==0)break;
    		if(m>num[1]+num[2]*5+num[3]*10+num[4]*25){
    			printf("Charlie cannot buy coffee.
    ");continue;
    		}
    		if(num[1]>=m){
    			printf("Throw in %d cents, 0 nickels, 0 dimes, and 0 quarters.
    ",m);continue;
    		}
    		for(i=0;i<=m;i++){
    			dp[i][0]=-inf;
    		}
    		dp[0][0]=dp[0][1]=dp[0][2]=dp[0][3]=dp[0][4]=0;
    		
    		for(i=1;i<=4;i++){
    			ans=num[i]*w[i];
    			if(ans>=m){
    				for(j=w[i];j<=m;j++){
    					if(dp[j-w[i]][0]>=0){
    						if(dp[j-w[i]][0]+v[i]>dp[j][0]){
    							dp[j][0]=dp[j-w[i]][0]+v[i];
    							dp[j][1]=dp[j-w[i]][1];dp[j][2]=dp[j-w[i]][2];dp[j][3]=dp[j-w[i]][3];dp[j][4]=dp[j-w[i]][4];
    							dp[j][i]++;
    							
    						}
    					}
    				}
    			}
    			else{
    				k=1;sum=0;
    				while(sum+k<num[i]){
    					sum+=k;
    					for(j=m;j>=k*w[i];j--){
    						if(dp[j-k*w[i]][0]>=0){
    							if(dp[j-k*w[i]][0]+k*v[i]>dp[j][0]){
    								dp[j][0]=dp[j-k*w[i]][0]+k*v[i];
    							    dp[j][1]=dp[j-k*w[i]][1];dp[j][2]=dp[j-k*w[i]][2];dp[j][3]=dp[j-k*w[i]][3];dp[j][4]=dp[j-k*w[i]][4];
    							    dp[j][i]+=k;
    							    
    							}
    						}
    						
    					}
    					k=k*2;
    				}
    				k=num[i]-sum;
    				for(j=m;j>=k*w[i];j--){
    						if(dp[j-k*w[i]][0]>=0){
    							if(dp[j-k*w[i]][0]+k*v[i]>dp[j][0]){
    								dp[j][0]=dp[j-k*w[i]][0]+k*v[i];
    							    dp[j][1]=dp[j-k*w[i]][1];dp[j][2]=dp[j-k*w[i]][2];dp[j][3]=dp[j-k*w[i]][3];dp[j][4]=dp[j-k*w[i]][4];
    							    dp[j][i]+=k;
    							  
    							}
    						}
    						
    				}
    			}
    		}
    		if(dp[m][0]>0)
    		printf("Throw in %d cents, %d nickels, %d dimes, and %d quarters.
    ",dp[m][1],dp[m][2],dp[m][3],dp[m][4]);
    		else printf("Charlie cannot buy coffee.
    ");
    		//printf("%d
    ",dp[m][0]);
    	}
    	return 0;
    }

  • 相关阅读:
    HDOJ 1556 线段树
    POJ 3977 折半枚举
    2017ACM省赛选拔赛题解
    关于四舍五入和截断
    POJ 3422 最小费用最大流
    Codeforces Round #407 (Div. 2) D. Weird journey 思维+欧拉
    POJ 3155 最大密度子图
    无向图最小割 stoer_wagner算法
    最大权闭合子图
    L2-001. 紧急救援 Dijkstra
  • 原文地址:https://www.cnblogs.com/herumw/p/9464728.html
Copyright © 2011-2022 走看看