zoukankan      html  css  js  c++  java
  • hdu3001 Travelling

    Problem Description
    After coding so many days,Mr Acmer wants to have a good rest.So travelling is the best choice!He has decided to visit n cities(he insists on seeing all the cities!And he does not mind which city being his start station because superman can bring him to any city at first but only once.), and of course there are m roads here,following a fee as usual.But Mr Acmer gets bored so easily that he doesn't want to visit a city more than twice!And he is so mean that he wants to minimize the total fee!He is lazy you see.So he turns to you for help.
     

    Input
    There are several test cases,the first line is two intergers n(1<=n<=10) and m,which means he needs to visit n cities and there are m roads he can choose,then m lines follow,each line will include three intergers a,b and c(1<=a,b<=n),means there is a road between a and b and the cost is of course c.Input to the End Of File.
     

    Output
    Output the minimum fee that he should pay,or -1 if he can't find such a route.
     

    Sample Input
    2 1 1 2 100 3 2 1 2 40 2 3 50 3 3 1 2 3 1 3 4 2 3 10
     

    Sample Output
    100 90 7

    看了别人的思路,自己写出来了:)。这题和poj3311差不多,但是不能用floyd处理,因为它有访问次数限制,最多相同的地方访问两次,至少一次,所以为了存储状态,我们可以用三进制表示,1代表访问一次,2代表访问2次。动态转移方程也和之前的差不多,为dp[s][i]=min(dp[s][i],dp[s-san[i-1]][j]+dis[j][i])。最后的结论要在访问过程中产生,如果当前所枚举的状态符合用三进制表示后每一位的数都大于0,那么就表示都访问到了,就可以和所求的结果ans比,如果比ans小就更新。

    #include<stdio.h>
    #include<string.h>
    #define inf 88888888
    int dis[15][15],dp[200000][15],wei[15],num,t;
    int san[15]={1,3,9,27,81,243,729,2187,6561,19683,59049,177147};
    int min(int a,int b){
    	return a<b?a:b;
    }
    void zhuanhua(int x)
    {
    	int i,j;
    	num=0,t=0;
    	while(x>0){
    		if(x%3>0)num++;
    		wei[++t]=x%3;
    		x=x/3;
    	}
    }
    
    int main()
    {
    	int n,m,i,j,a,b,c,s,ans;
    	while(scanf("%d%d",&n,&m)!=EOF)
    	{
    		for(i=1;i<=n;i++){
    			for(j=1;j<=n;j++){
    				dis[i][j]=inf;
    			}
    		}
    		for(i=1;i<=m;i++){
    			scanf("%d%d%d",&a,&b,&c);
    		    if(dis[a][b]>c)dis[a][b]=dis[b][a]=c;
    		}
    		ans=inf;
    		for(s=1;s<san[n+1];s++){
    			for(i=1;i<=n;i++){
    				dp[s][i]=inf;
    			}
    		}
    		
    		
    		for(s=1;s<san[n+1];s++){
    			zhuanhua(s);
    			for(i=1;i<=n;i++){
    				if(t>=i && wei[t]>0){
    					if(s==san[i-1]){
    						dp[s][i]=0;
    					}
    					else{
    						for(j=1;j<=n;j++){
    							if(j!=i && wei[j]>0){
    								dp[s][i]=min(dp[s][i],dp[s-san[i-1]][j]+dis[j][i]);
    								if(num==n){
    									ans=min(ans,dp[s][i]);
    								}
    							}
    						}
    					}
    				}
    			}
    			if(ans==0)break;
    		}
    		if(ans==inf)printf("-1
    ");
    		else printf("%d
    ",ans);
    	}
    } 


  • 相关阅读:
    Lua笔记——8.Lua & C
    Shader笔记——5.渲染纹理
    常用工具——2.Mac
    Shader笔记——4.纹理基础
    设计模式学习笔记四:简单工厂模式抽象工厂模式工厂方法模式
    设计模式学习笔记三:策略模式和状态模式
    设计模式学习笔记二:单例模式
    设计模式学习笔记一:程序设计原则
    数据结构和算法学习笔记十六:红黑树
    数据结构和算法学习笔记十五:多路查找树(B树)
  • 原文地址:https://www.cnblogs.com/herumw/p/9464736.html
Copyright © 2011-2022 走看看