zoukankan      html  css  js  c++  java
  • hdu2639 Bone Collector II

    Problem Description
    The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you haven't seen it before,it doesn't matter,I will give you a link:

    Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602

    Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.

    If the total number of different values is less than K,just ouput 0.
     

    Input
    The first line contain a integer T , the number of cases.
    Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
     

    Output
    One integer per line representing the K-th maximum of the total value (this number will be less than 231).
     

    Sample Input
    3 5 10 2 1 2 3 4 5 5 4 3 2 1 5 10 12 1 2 3 4 5 5 4 3 2 1 5 10 16 1 2 3 4 5 5 4 3 2 1
     

    Sample Output
    12 2

    0

    这题很巧妙,用的是01背包思想,普通的01背包求的是最优解,但是题目要求的是第K最大值,所以我们要多加一维状态,即dp[j][k]表示质量为j的第k大值,那么用a[],b[]记录dp[j][h]和dp[j-w[i]][h]+v[i](h从1~k)。然后通过这两个数组求出k个依次排列的最大值dp[j][k].

    #include<stdio.h>
    #include<string.h>
    int v[106],w[105],dp[1006][50];
    int main()
    {
    	int n,m,i,j,T,a[200],b[200],h,k,t,x,y;
    	scanf("%d",&T);
    	while(T--)
    	{
    		scanf("%d%d%d",&n,&m,&k);
    		for(i=1;i<=n;i++){
    			scanf("%d",&v[i]);
    		}
    		for(i=1;i<=n;i++){
    			scanf("%d",&w[i]);
    		}
    		memset(dp,0,sizeof(dp));
    		for(i=1;i<=n;i++){
    			for(j=m;j>=w[i];j--){
    				for(h=1;h<=k;h++){
    					a[h]=dp[j][h];
    					b[h]=dp[j-w[i]][h]+v[i];
    				}
    				a[k+1]=-1;b[k+1]=-1;
    				h=0;x=y=1;
    				while(h<k && (x<=k || y<=k)){
    					if(a[x]>b[y]){
    						t=a[x++];
    					}
    					else t=b[y++];
    					if(h==0 ||(h>0 && dp[j][h]!=t)){
    						h++;dp[j][h]=t;
    					} 
    				}
    			}
    		}
    		printf("%d
    ",dp[m][k]);
    	}
    	return 0;
    }


  • 相关阅读:
    线程安全与可重入编写方法
    新手MySQL工程师必备命令速查手册
    分布式之数据库和缓存双写一致性方案解析
    在java代码中用xslt处理xml文件
    Java并发编程之并发代码设计
    Java多线程和并发基础
    Java多线程面试大全
    springboot获取URL请求参数的多种方式
    JAVA文件转换为Base64
    Silver Cow Party
  • 原文地址:https://www.cnblogs.com/herumw/p/9464740.html
Copyright © 2011-2022 走看看