zoukankan      html  css  js  c++  java
  • B. OR in Matrix

    Let's define logical OR as an operation on two logical values (i. e. values that belong to the set {0, 1}) that is equal to 1 if either or both of the logical values is set to 1, otherwise it is 0. We can define logical OR of three or more logical values in the same manner:

     where  is equal to 1 if some ai = 1, otherwise it is equal to 0.

    Nam has a matrix A consisting of m rows and n columns. The rows are numbered from 1 to m, columns are numbered from 1 to n. Element at row i (1 ≤ i ≤ m) and column j (1 ≤ j ≤ n) is denoted as Aij. All elements of A are either 0 or 1. From matrix A, Nam creates another matrix B of the same size using formula:

    .

    (Bij is OR of all elements in row i and column j of matrix A)

    Nam gives you matrix B and challenges you to guess matrix A. Although Nam is smart, he could probably make a mistake while calculating matrix B, since size of A can be large.

    Input

    The first line contains two integer m and n (1 ≤ m, n ≤ 100), number of rows and number of columns of matrices respectively.

    The next m lines each contain n integers separated by spaces describing rows of matrix B (each element of B is either 0 or 1).

    Output

    In the first line, print "NO" if Nam has made a mistake when calculating B, otherwise print "YES". If the first line is "YES", then also print mrows consisting of n integers representing matrix A that can produce given matrix B. If there are several solutions print any one.

    Sample test(s)
    input
    2 2
    1 0
    0 0
    
    output
    NO
    
    input
    2 3
    1 1 1
    1 1 1
    
    output
    YES
    1 1 1
    1 1 1
    
    input
    2 3
    0 1 0
    1 1 1
    
    output
    YES
    0 0 0
    0 1 0
    
    
    这题刚开始以为要用搜索,看了别人的题解才知道不用的,因为只要把0所在的行和列都变成0,其他的都变为1就得到了原来的矩阵A,(注意:其实由B得到的矩阵不止A这一个,但是这样得到的A是所有的到矩阵的最优解,因为得到1的数是最多的。
    #include<stdio.h>
    #include<string.h>
    int a[200][200],b[200][200],c[200][200];
    int main()
    {
    	int n,m,i,j,h,t,flag,flag1;
    	while(scanf("%d%d",&n,&m)!=EOF)
    	{
    		memset(a,0,sizeof(a));
    		memset(b,0,sizeof(b));
    		memset(c,0,sizeof(c));
    		for(i=1;i<=n;i++){
    			for(j=1;j<=m;j++){
    				scanf("%d",&a[i][j]);
    				b[i][j]=1;
    			}
    		}
    		for(i=1;i<=n;i++){
    			for(j=1;j<=m;j++){
    				if(a[i][j]==0){
    					for(h=1;h<=m;h++){
    						b[i][h]=0;
    					}
    					for(t=1;t<=n;t++){
    						b[t][j]=0;
    					}
    				}
    			}
    		}
    		
    		for(i=1;i<=n;i++){
    			for(j=1;j<=m;j++){
    				flag=0;
    				for(h=1;h<=m;h++){
    					if(b[i][h]==1){
    						flag=1;break;
    					}
    				}
    				for(t=1;t<=n;t++){
    					if(b[t][j]==1){
    						flag=1;break;
    					}
    				}
    				if(flag==1){
    					c[i][j]=1;continue;
    				}
    				c[i][j]=0;
    			}
    		}
    		flag1=1;
    		for(i=1;i<=n;i++){
    			for(j=1;j<=m;j++){
    				if(c[i][j]!=a[i][j]){
    					flag1=0;break;
    				}
    			}
    			if(flag1==0)break;
    		}
    		if(flag1==0){
    			printf("NO
    ");continue;
    		}
    		printf("YES
    ");
    		for(i=1;i<=n;i++){
    			for(j=1;j<=m;j++){
    				if(j!=m)printf("%d ",b[i][j]);
    				else printf("%d
    ",b[i][j]);
    			}
    		}
    	}
    	return 0;
    }
    
  • 相关阅读:
    css选择器
    有关cookies与session的详细信息
    06OC之内存管理
    04OC之分类Category,协议Protocol,Copy,代码块block
    IOS学习目录
    03OC的类的补充
    02OC的类和对象
    02第一个OC程序
    01OC概述
    02快速学习ExtJs之---第一个HelloWord!
  • 原文地址:https://www.cnblogs.com/herumw/p/9464841.html
Copyright © 2011-2022 走看看