zoukankan      html  css  js  c++  java
  • 线程池

    #ifndef __THREADPOOL_H_
    #define __THREADPOOL_H_
    
    typedef struct threadpool_t threadpool_t;
    
    /**
     * @function threadpool_create
     * @descCreates a threadpool_t object.
     * @param thr_num  thread num
     * @param max_thr_num  max thread size
     * @param queue_max_size   size of the queue.
     * @return a newly created thread pool or NULL
     */
    threadpool_t *threadpool_create(int min_thr_num, int max_thr_num, int queue_max_size);
    
    /**
     * @function threadpool_add
     * @desc add a new task in the queue of a thread pool
     * @param pool     Thread pool to which add the task.
     * @param function Pointer to the function that will perform the task.
     * @param argument Argument to be passed to the function.
     * @return 0 if all goes well,else -1
     */
    int threadpool_add(threadpool_t *pool, void*(*function)(void *arg), void *arg);
    
    /**
     * @function threadpool_destroy
     * @desc Stops and destroys a thread pool.
     * @param pool  Thread pool to destroy.
     * @return 0 if destory success else -1
     */
    int threadpool_destroy(threadpool_t *pool);
    
    /**
     * @desc get the thread num
     * @pool pool threadpool
     * @return # of the thread
     */
    int threadpool_all_threadnum(threadpool_t *pool);
    
    /**
     * desc get the busy thread num
     * @param pool threadpool
     * return # of the busy thread
     */
    int threadpool_busy_threadnum(threadpool_t *pool);
    
    #endif
    
    #include <stdlib.h>
    #include <pthread.h>
    #include <unistd.h>
    #include <assert.h>
    #include <stdio.h>
    #include <string.h>
    #include <signal.h>
    #include <errno.h>
    #include "threadpool.h"
    
    #define DEFAULT_TIME 10                 /*10s检测一次*/
    #define MIN_WAIT_TASK_NUM 10            /*如果queue_size > MIN_WAIT_TASK_NUM 添加新的线程到线程池*/ 
    #define DEFAULT_THREAD_VARY 10          /*每次创建和销毁线程的个数*/
    #define true 1
    #define false 0
    
    typedef struct {
        void *(*function)(void *);          /* 函数指针,回调函数 */
        void *arg;                          /* 上面函数的参数 */
    } threadpool_task_t;                    /* 各子线程任务结构体 */
    
    /* 描述线程池相关信息 */
    struct threadpool_t {
        pthread_mutex_t lock;               /* 用于锁住本结构体 */    
        pthread_mutex_t thread_counter;     /* 记录忙状态线程个数de琐 -- busy_thr_num */
        pthread_cond_t queue_not_full;      /* 当任务队列满时,添加任务的线程阻塞,等待此条件变量 */
        pthread_cond_t queue_not_empty;     /* 任务队列里不为空时,通知等待任务的线程 */
    
        pthread_t *threads;                 /* 存放线程池中每个线程的tid。数组 */
        pthread_t adjust_tid;               /* 存管理线程tid */
        threadpool_task_t *task_queue;      /* 任务队列 */
    
        int min_thr_num;                    /* 线程池最小线程数 */
        int max_thr_num;                    /* 线程池最大线程数 */
        int live_thr_num;                   /* 当前存活线程个数 */
        int busy_thr_num;                   /* 忙状态线程个数 */
        int wait_exit_thr_num;              /* 要销毁的线程个数 */
    
        int queue_front;                    /* task_queue队头下标 */
        int queue_rear;                     /* task_queue队尾下标 */
        int queue_size;                     /* task_queue队中实际任务数 */
        int queue_max_size;                 /* task_queue队列可容纳任务数上限 */
    
        int shutdown;                       /* 标志位,线程池使用状态,true或false */
    };
    
    /**
     * @function void *threadpool_thread(void *threadpool)
     * @desc the worker thread
     * @param threadpool the pool which own the thread
     */
    void *threadpool_thread(void *threadpool);
    
    /**
     * @function void *adjust_thread(void *threadpool);
     * @desc manager thread
     * @param threadpool the threadpool
     */
    void *adjust_thread(void *threadpool);
    
    /**
     * check a thread is alive
     */
    int is_thread_alive(pthread_t tid);
    int threadpool_free(threadpool_t *pool);
    
    threadpool_t *threadpool_create(int min_thr_num, int max_thr_num, int queue_max_size)
    {
        int i;
        threadpool_t *pool = NULL;
        do {
            if((pool = (threadpool_t *)malloc(sizeof(threadpool_t))) == NULL) {  
                printf("malloc threadpool fail");
                break;/*跳出do while*/
            }
    
            pool->min_thr_num = min_thr_num;
            pool->max_thr_num = max_thr_num;
            pool->busy_thr_num = 0;
            pool->live_thr_num = min_thr_num;               /* 活着的线程数 初值=最小线程数 */
            
            pool->queue_size = 0;                           /* 有0个产品 */
            pool->queue_max_size = queue_max_size;
            pool->queue_front = 0;
            pool->queue_rear = 0;
            pool->shutdown = false;                         /* 不关闭线程池 */
    
            /* 根据最大线程上限数, 给工作线程数组开辟空间, 并清零 */
            pool->threads = (pthread_t *)malloc(sizeof(pthread_t)*max_thr_num); 
            if (pool->threads == NULL) {
                printf("malloc threads fail");
                break;
            }
            memset(pool->threads, 0, sizeof(pthread_t)*max_thr_num);
    
            /* 队列开辟空间 */
            pool->task_queue = (threadpool_task_t *)malloc(sizeof(threadpool_task_t)*queue_max_size);
            if (pool->task_queue == NULL) {
                printf("malloc task_queue fail");
                break;
            }
    
            /* 初始化互斥琐、条件变量 */
            if (pthread_mutex_init(&(pool->lock), NULL) != 0
                    || pthread_mutex_init(&(pool->thread_counter), NULL) != 0
                    || pthread_cond_init(&(pool->queue_not_empty), NULL) != 0
                    || pthread_cond_init(&(pool->queue_not_full), NULL) != 0)
            {
                printf("init the lock or cond fail");
                break;
            }
    
            /* 启动 min_thr_num 个 work thread */
            for (i = 0; i < min_thr_num; i++) {
                pthread_create(&(pool->threads[i]), NULL, threadpool_thread, (void *)pool);/*pool指向当前线程池*/
                printf("start thread 0x%x...
    ", (unsigned int)pool->threads[i]);
            }
            pthread_create(&(pool->adjust_tid), NULL, adjust_thread, (void *)pool);/* 启动管理者线程 */
    
            return pool;
    
        } while (0);
    
        threadpool_free(pool);      /* 前面代码调用失败时,释放poll存储空间 */
    
        return NULL;
    }
    
    /* 向线程池中 添加一个任务 */
    int threadpool_add(threadpool_t *pool, void*(*function)(void *arg), void *arg)
    {
        pthread_mutex_lock(&(pool->lock));
    
        /* ==为真,队列已经满, 调wait阻塞 */
        while ((pool->queue_size == pool->queue_max_size) && (!pool->shutdown)) {
            pthread_cond_wait(&(pool->queue_not_full), &(pool->lock));
        }
        if (pool->shutdown) {
            pthread_mutex_unlock(&(pool->lock));
        }
    
        /* 清空 工作线程 调用的回调函数 的参数arg */
        if (pool->task_queue[pool->queue_rear].arg != NULL) {
            free(pool->task_queue[pool->queue_rear].arg);
            pool->task_queue[pool->queue_rear].arg = NULL;
        }
        /*添加任务到任务队列里*/
        pool->task_queue[pool->queue_rear].function = function;
        pool->task_queue[pool->queue_rear].arg = arg;
        pool->queue_rear = (pool->queue_rear + 1) % pool->queue_max_size;       /* 队尾指针移动, 模拟环形 */
        pool->queue_size++;
    
        /*添加完任务后,队列不为空,唤醒线程池中 等待处理任务的线程*/
        pthread_cond_signal(&(pool->queue_not_empty));
        pthread_mutex_unlock(&(pool->lock));
    
        return 0;
    }
    
    /* 线程池中各个工作线程 */
    void *threadpool_thread(void *threadpool)
    {
        threadpool_t *pool = (threadpool_t *)threadpool;
        threadpool_task_t task;
    
        while (true) {
            /* Lock must be taken to wait on conditional variable */
            /*刚创建出线程,等待任务队列里有任务,否则阻塞等待任务队列里有任务后再唤醒接收任务*/
            pthread_mutex_lock(&(pool->lock));
    
            /*queue_size == 0 说明没有任务,调 wait 阻塞在条件变量上, 若有任务,跳过该while*/
            while ((pool->queue_size == 0) && (!pool->shutdown)) {  
                printf("thread 0x%x is waiting
    ", (unsigned int)pthread_self());
                pthread_cond_wait(&(pool->queue_not_empty), &(pool->lock));
    
                /*清除指定数目的空闲线程,如果要结束的线程个数大于0,结束线程*/
                if (pool->wait_exit_thr_num > 0) {
                    pool->wait_exit_thr_num--;
    
                    /*如果线程池里线程个数大于最小值时可以结束当前线程*/
                    if (pool->live_thr_num > pool->min_thr_num) {
                        printf("thread 0x%x is exiting
    ", (unsigned int)pthread_self());
                        pool->live_thr_num--;
                        pthread_mutex_unlock(&(pool->lock));
                        pthread_exit(NULL);
                    }
                }
            }
    
            /*如果指定了true,要关闭线程池里的每个线程,自行退出处理*/
            if (pool->shutdown) {
                pthread_mutex_unlock(&(pool->lock));
                printf("thread 0x%x is exiting
    ", (unsigned int)pthread_self());
                pthread_exit(NULL);     /* 线程自行结束 */
            }
    
            /*从任务队列里获取任务, 是一个出队操作*/
            task.function = pool->task_queue[pool->queue_front].function;
            task.arg = pool->task_queue[pool->queue_front].arg;
    
            pool->queue_front = (pool->queue_front + 1) % pool->queue_max_size;       /* 出队,模拟环形队列 */
            pool->queue_size--;
    
            /*通知可以有新的任务添加进来*/
            pthread_cond_broadcast(&(pool->queue_not_full));
    
            /*任务取出后,立即将 线程池琐 释放*/
            pthread_mutex_unlock(&(pool->lock));
    
            /*执行任务*/ 
            printf("thread 0x%x start working
    ", (unsigned int)pthread_self());
            pthread_mutex_lock(&(pool->thread_counter));                            /*忙状态线程数变量琐*/
            pool->busy_thr_num++;                                                   /*忙状态线程数+1*/
            pthread_mutex_unlock(&(pool->thread_counter));
            (*(task.function))(task.arg);                                           /*执行回调函数任务*/
            //task.function(task.arg);                                              /*执行回调函数任务*/
    
            /*任务结束处理*/ 
            printf("thread 0x%x end working
    ", (unsigned int)pthread_self());
            pthread_mutex_lock(&(pool->thread_counter));
            pool->busy_thr_num--;                                       /*处理掉一个任务,忙状态数线程数-1*/
            pthread_mutex_unlock(&(pool->thread_counter));
        }
    
        pthread_exit(NULL);
    }
    
    /* 管理线程 */
    void *adjust_thread(void *threadpool)
    {
        int i;
        threadpool_t *pool = (threadpool_t *)threadpool;
        while (!pool->shutdown) {
    
            sleep(DEFAULT_TIME);                                    /*定时 对线程池管理*/
    
            pthread_mutex_lock(&(pool->lock));
            int queue_size = pool->queue_size;                      /* 关注 任务数 */
            int live_thr_num = pool->live_thr_num;                  /* 存活 线程数 */
            pthread_mutex_unlock(&(pool->lock));
    
            pthread_mutex_lock(&(pool->thread_counter));
            int busy_thr_num = pool->busy_thr_num;                  /* 忙着的线程数 */
            pthread_mutex_unlock(&(pool->thread_counter));
    
            /* 创建新线程 算法: 任务数大于最小线程池个数, 且存活的线程数少于最大线程个数时 如:30>=10 && 40<100*/
            if (queue_size >= MIN_WAIT_TASK_NUM && live_thr_num < pool->max_thr_num) {
                pthread_mutex_lock(&(pool->lock));  
                int add = 0;
    
                /*一次增加 DEFAULT_THREAD 个线程*/
                for (i = 0; i < pool->max_thr_num && add < DEFAULT_THREAD_VARY
                        && pool->live_thr_num < pool->max_thr_num; i++) {
                    if (pool->threads[i] == 0 || !is_thread_alive(pool->threads[i])) {
                        pthread_create(&(pool->threads[i]), NULL, threadpool_thread, (void *)pool);
                        add++;
                        pool->live_thr_num++;
                    }
                }
    
                pthread_mutex_unlock(&(pool->lock));
            }
    
            /* 销毁多余的空闲线程 算法:忙线程X2 小于 存活的线程数 且 存活的线程数 大于 最小线程数时*/
            if ((busy_thr_num * 2) < live_thr_num  &&  live_thr_num > pool->min_thr_num) {
    
                /* 一次销毁DEFAULT_THREAD个线程, 隨機10個即可 */
                pthread_mutex_lock(&(pool->lock));
                pool->wait_exit_thr_num = DEFAULT_THREAD_VARY;      /* 要销毁的线程数 设置为10 */
                pthread_mutex_unlock(&(pool->lock));
    
                for (i = 0; i < DEFAULT_THREAD_VARY; i++) {
                    /* 通知处在空闲状态的线程, 他们会自行终止*/
                    pthread_cond_signal(&(pool->queue_not_empty));
                }
            }
        }
    
        return NULL;
    }
    
    int threadpool_destroy(threadpool_t *pool)
    {
        int i;
        if (pool == NULL) {
            return -1;
        }
        pool->shutdown = true;
    
        /*先销毁管理线程*/
        pthread_join(pool->adjust_tid, NULL);
    
        for (i = 0; i < pool->live_thr_num; i++) {
            /*通知所有的空闲线程*/
            pthread_cond_broadcast(&(pool->queue_not_empty));
        }
        for (i = 0; i < pool->live_thr_num; i++) {
            pthread_join(pool->threads[i], NULL);
        }
        threadpool_free(pool);
    
        return 0;
    }
    
    int threadpool_free(threadpool_t *pool)
    {
        if (pool == NULL) {
            return -1;
        }
    
        if (pool->task_queue) {
            free(pool->task_queue);
        }
        if (pool->threads) {
            free(pool->threads);
            pthread_mutex_lock(&(pool->lock));
            pthread_mutex_destroy(&(pool->lock));
            pthread_mutex_lock(&(pool->thread_counter));
            pthread_mutex_destroy(&(pool->thread_counter));
            pthread_cond_destroy(&(pool->queue_not_empty));
            pthread_cond_destroy(&(pool->queue_not_full));
        }
        free(pool);
        pool = NULL;
    
        return 0;
    }
    
    int threadpool_all_threadnum(threadpool_t *pool)
    {
        int all_threadnum = -1;
        pthread_mutex_lock(&(pool->lock));
        all_threadnum = pool->live_thr_num;
        pthread_mutex_unlock(&(pool->lock));
        return all_threadnum;
    }
    
    int threadpool_busy_threadnum(threadpool_t *pool)
    {
        int busy_threadnum = -1;
        pthread_mutex_lock(&(pool->thread_counter));
        busy_threadnum = pool->busy_thr_num;
        pthread_mutex_unlock(&(pool->thread_counter));
        return busy_threadnum;
    }
    
    int is_thread_alive(pthread_t tid)
    {
        int kill_rc = pthread_kill(tid, 0);     //发0号信号,测试线程是否存活
        if (kill_rc == ESRCH) {
            return false;
        }
    
        return true;
    }
    
    /*测试*/ 
    
    #if 1
    /* 线程池中的线程,模拟处理业务 */
    void *process(void *arg)
    {
        printf("thread 0x%x working on task %d
     ",(unsigned int)pthread_self(),*(int *)arg);
        sleep(1);
        printf("task %d is end
    ",*(int *)arg);
    
        return NULL;
    }
    int main(void)
    {
        /*threadpool_t *threadpool_create(int min_thr_num, int max_thr_num, int queue_max_size);*/
    
        threadpool_t *thp = threadpool_create(3,100,100);/*创建线程池,池里最小3个线程,最大100,队列最大100*/
        printf("pool inited");
    
        //int *num = (int *)malloc(sizeof(int)*20);
        int num[20], i;
        for (i = 0; i < 20; i++) {
            num[i]=i;
            printf("add task %d
    ",i);
            threadpool_add(thp, process, (void*)&num[i]);     /* 向线程池中添加任务 */
        }
        sleep(10);                                          /* 等子线程完成任务 */
        threadpool_destroy(thp);
    
        return 0;
    }
    
    #endif
    
  • 相关阅读:
    算法5--排序
    算法4---数组
    算法3---字符串
    算法2---链表4---单循环链表
    wcf精通1-15
    框架技术细节
    Achieving High Availability and Scalability
    Windows平台下利用APM来做负载均衡方案
    Windows平台分布式架构实践
    web api control注册及重写DefaultHttpControllerSelector、ApiControllerActionSelector、ApiControllerActionInvoker
  • 原文地址:https://www.cnblogs.com/hesper/p/10739975.html
Copyright © 2011-2022 走看看