zoukankan      html  css  js  c++  java
  • 2013小米校园招聘

    来源:http://blog.csdn.net/hackbuteer1/article/details/8484974

    一、填空题(5分每题,一共8题)
    1、两个人A(速度为a)、B(速度为b)在一直路上相向而行。在A、B距离为s的时候,A放出一个鸽子C(速度为c),C飞到B后,立即掉头飞向A,遇到A在掉头飞向B......就这样在AB之间飞来飞去,直到A、B相遇,这期间鸽子共飞行路程为?
    答案是:s*c/(a+b)

    2、(he)的平方=she。h、e、s代表的数字?
    答案是:分别代表2、5、6

    3、运算(93&-8)的结果为:88

    4、将一个无序整数数组构造成一个最大堆,最差时间复杂度为:
    5、int *p = &n;
    那么*p的值是()
    A、p的值     B、p的地址     C、n的值     D、n的地址

    6、一个完全二叉树有770个节点,那么其叶子的个数为:385

    7、有一个二维数组a[1...100 , 1...65]有100行,65列,我们以行序为主序,如果该数组的基地址是10000,且每个元素占2个存储单元,请问a[56 , 22]的存储地址是:17324
    8、以下代码输出结果是:

    1. class B  
    2. {  
    3. public:  
    4.     B()  
    5.     {  
    6.         cout<<"B constructor\n";  
    7.         s = "B";  
    8.     }  
    9.     void f()  
    10.     {  
    11.         cout<<s;  
    12.     }  
    13. private:  
    14.     string s;  
    15. };  
    16.   
    17. class D : public B  
    18. {  
    19. public:  
    20.     D() : B()  
    21.     {  
    22.         cout<<"D constructor\n";  
    23.         s = "D";  
    24.     }  
    25.     void f()  
    26.     {  
    27.         cout<<s;  
    28.     }  
    29. private:  
    30.     string s;  
    31. };  
    32.   
    33. int main(void)    
    34. {  
    35.     B *b = new D();  
    36.     b->f();  
    37.     ((D*)b)->f();  
    38.     delete b;  
    39.     return 0;  
    40. }  

    输出结果是
    B constructor
    D constructor
    BD

    二、编程题
    1、数组乘积(15分)
    输入:一个长度为n的整数数组input
    输出:一个长度为n的整数数组result,满足result[i] = input数组中除了input[i]之外所有数的乘积(假设不会溢出)。比如输入:input = {2,3,4,5},输出result = {60,40,30,24}
    程序时间和空间复杂度越小越好。
    C/C++:
    int *cal(int* input , int n);

    Java:
    int[] cal(int[] input);

    1. int *cal(int* input , int n)  
    2. {  
    3.     int i ;  
    4.     int *result = new int[n];  
    5.     result[0] = 1;  
    6.     for(i = 1 ; i < n ; ++i)  
    7.         result[i] = result[i-1]*input[i-1];  
    8.     result[0] = input[n-1];  
    9.     for(i = n-2 ; i > 0 ; --i)  
    10.     {  
    11.         result[i] *= result[0];  
    12.         result[0] *= input[i];  
    13.     }  
    14.     return result;  
    15. }  


    2、异形数(25分)
    在一个长度为n的整形数组a里,除了三个数字只出现一次外,其他的数字都出现了2次。请写程序输出任意一个只出现一次的数字,程序时间和空间复杂度越小越好。
    例如: a = {1,3,7,9,5,9,4,3,6,1,7},输出4或5或6
    C/C++:
    void find(int* a , int n);

    Java:
    void find(int[] a);

    1. // lowbit表示的是某个数从右往左扫描第一次出现1的位置  
    2. int lowbit(int x)  
    3. {  
    4.     return x&~(x-1);  
    5. }  
    6.   
    7. void find(int* a , int n)  
    8. {  
    9.     int i , xors;  
    10.     xors = 0;  
    11.     for(i = 0 ; i < n ; ++i)  
    12.         xors ^= a[i];  
    13.     // 三个数两两的异或后lowbit有两个相同,一个不同,可以分为两组  
    14.     int fips = 0;  
    15.     for(i = 0 ; i < n ; ++i)  
    16.         fips ^= lowbit(xors ^ a[i]);  
    17.     // 表示的是:flips=lowbit(a^b)^lowbit(a^c)^lowbit(b^c)   
    18.     int b;    // 假设三个只出现一次的其中一个数为b  
    19.     b = 0;  
    20.     for(i = 0 ; i < n ; ++i)  
    21.     {  
    22.         if(lowbit(xors ^ a[i]) == fips)  
    23.             b ^= a[i];  
    24.     }  
    25.     // 成功找到三个数中一个数  
    26.     cout<<b<<endl;  
    27. }  


    3、朋友圈(25分)
    假如已知有n个人和m对好友关系(存于数字r)。如果两个人是直接或间接的好友(好友的好友的好友...),则认为他们属于同一个朋友圈,请写程序求出这n个人里一共有多少个朋友圈。
    假如:n = 5 , m = 3 , r = {{1 , 2} , {2 , 3} , {4 , 5}},表示有5个人,1和2是好友,2和3是好友,4和5是好友,则1、2、3属于一个朋友圈,4、5属于另一个朋友圈,结果为2个朋友圈。
    最后请分析所写代码的时间、空间复杂度。评分会参考代码的正确性和效率。
    C/C++:
    int friends(int n , int m , int* r[]);

    Java:
    int friends(int n , int m , int[][] r);

      1. // 简单的并查集应用  
      2. int set[10001];  
      3.   
      4. inline int find(int x)           //带路径优化的并查集查找算法  
      5. {  
      6.     int i , j , r;  
      7.     r = x;  
      8.     while(set[r] != r)   
      9.         r = set[r];  
      10.     i = x;  
      11.     while(i != r)   
      12.     {  
      13.         j = set[i];  
      14.         set[i] = r;  
      15.         i = j;  
      16.     }  
      17.     return r;  
      18. }  
      19. inline void merge(int x , int y)     //优化的并查集归并算法  
      20. {  
      21.     int t = find(x);  
      22.     int h = find(y);  
      23.     if(t < h)  
      24.         set[h] = t;  
      25.     else  
      26.         set[t] = h;  
      27. }  
      28.   
      29. int friends(int n , int m , int* r[])  
      30. {  
      31.     int i , count;  
      32.     for(i = 1 ; i <= n ; ++i)    //初始化并查集,各点为孤立点,分支数为n   
      33.         set[i] = i;  
      34.     for(i = 0 ; i < m ; ++i)  
      35.         merge(r[i][0] , r[i][1]);  
      36.     count = 0;  
      37.     for(i = 1 ; i <= n ; ++i)  
      38.     {  
      39.         if(set[i] == i)  
      40.             ++count;  
      41.     }  
      42.     return count;  


    微信公众号: 猿人谷
    如果您认为阅读这篇博客让您有些收获,不妨点击一下右下角的【推荐】
    如果您希望与我交流互动,欢迎关注微信公众号
    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接。

  • 相关阅读:
    ServletContext笔记
    Session笔记
    Cookie笔记
    递归实现取数组最大值
    栈结构实现队列结构
    返回栈中最小元素的两种实现O(1)
    数组实现不超过固定大小的队列(环形数组)
    双向链表实现栈和队列
    Windows Server 2008 R2 / Windows Server 2012 R2 安装 .NET Core 3.1
    Windows 7 / Windows Server 2008 R2 升级至 SP1
  • 原文地址:https://www.cnblogs.com/heyonggang/p/3077680.html
Copyright © 2011-2022 走看看