zoukankan      html  css  js  c++  java
  • 2036 改革春风吹满地

    Problem Description
    “ 改革春风吹满地,
    不会AC没关系;
    实在不行回老家,
    还有一亩三分地。
    谢谢!(乐队奏乐)”

    话说部分学生心态极好,每天就知道游戏,这次考试如此简单的题目,也是云里雾里,而且,还竟然来这么几句打油诗。
    好呀,老师的责任就是帮你解决问题,既然想种田,那就分你一块。
    这块田位于浙江省温州市苍南县灵溪镇林家铺子村,多边形形状的一块地,原本是linle 的,现在就准备送给你了。不过,任何事情都没有那么简单,你必须首先告诉我这块地到底有多少面积,如果回答正确才能真正得到这块地。
    发愁了吧?就是要让你知道,种地也是需要AC知识的!以后还是好好练吧...
     
    Input
    输入数据包含多个测试实例,每个测试实例占一行,每行的开始是一个整数n(3<=n<=100),它表示多边形的边数(当然也是顶点数),然后是按照逆时针顺序给出的n个顶点的坐标(x1, y1, x2, y2... xn, yn),为了简化问题,这里的所有坐标都用整数表示。
    输入数据中所有的整数都在32位整数范围内,n=0表示数据的结束,不做处理。
     
    Output
    对于每个测试实例,请输出对应的多边形面积,结果精确到小数点后一位小数。
    每个实例的输出占一行。
     
    Sample Input
    3 0 0 1 0 0 1 4 1 0 0 1 -1 0 0 -1 0
     
    Sample Output
    0.5 2.0

    最终AC代码如下:

    #include <cstdio>
    typedef struct point{
        int x, y;
    };
    double getArea(point a, point b){
        return a.x*b.y - a.y*b.x; //此处为什么不需要绝对值??? 
    }
    int main(){
        int i, n;
        point p[101];
        double ans;
        while(scanf("%d", &n) && n) {
            for(i=0; i<n; i++){
                scanf("%d %d", &(p[i]).x, &(p[i]).y);
                if(i > 0){
                    p[i].x -= p[0].x; //以p[0]为公共点 
                    p[i].y -= p[0].y;
                }
            }
            ans = 0;
            for(i=1; i<n-1; i++) ans += getArea(p[i], p[i+1]);
            printf("%.1lf
    ", ans/2);
        }
        return 0;
    }

    主要参考资料:

    1、HDU 2036 改革春风吹满地

    2、利用向量积(叉积)计算三角形的面积和多边形的面积

    总结:用向量叉积的形式求面积,我倒真的没想过,第一反应就是采用海伦公式解,但是通不过。不知道是不是测试用例的问题~另一个疑惑点是,向量叉积是有正负的,虽然顶点是按逆时针方向排列的,返回值一定是正的,但是为什么我返回前加上fabs()函数后,在OJ上反而不能通过了呢?这个问题目前没有想明白,写下来先记录吧。

    关于用海伦的写法如下:(不知道是算法本身存在问题,还是所采用的测试用例不能用海伦来解?)

    #include <bits/stdc++.h> 
    using namespace std;
    typedef long long int LL;
    
    //用海伦公式不能通过! 
    //由三边 求三角形面积 => 海伦公式 
    //p = (a+b+c)/2;
    //S = sqrt(p*(p-a)*(p-b)*(p-c)); 
    
    int main(){
        double p, t1, t2, t3, ans;
        LL i, n, a, b;
        vector<double> vd;
        vector<pair<LL, LL> > vp;
        while(scanf("%lld", &n), n!=0){
            vp.clear();
            for(i=0; i<n; i++){
                scanf("%lld %lld", &a, &b);
                vp.push_back(make_pair(a, b));
            }
            vd.clear();
            for(i=0; i<n; i++){
                a = (vp[(i+1)%n]).first - (vp[i]).first;
                b = (vp[(i+1)%n]).second - (vp[i]).second;
                vd.push_back(sqrt(1.0*(a*a+b*b)));
            }
            ans = 0;
            t1 = vd[0];
            for(i=2; i<vd.size(); i++){
                t2 = vd[i-1];
                a = (vp[0]).first - (vp[i]).first;
                b = (vp[0]).second - (vp[i]).second;
                t3 = sqrt(1.0 * (a*a + b*b));
                p = (t1 + t2 + t3) / 2;
                ans += sqrt(p * (p-t1) * (p-t2) * (p-t3));
                t1 = t3;
            }
            printf("%.1lf
    ", ans);
        }
        return 0;
    }
  • 相关阅读:
    Haskell 差点儿无痛苦上手指南
    HighCharts 具体使用及API文档说明
    又一道软通动力7K月薪面试题——银行业务调度系统
    [AngularJS + Webpack] require directives
    [AngularJS + Webpack] Using Webpack for angularjs
    [Whole Web] [AngularJS] Localize your AngularJS Application with angular-localization
    [React] React Fundamentals: Mixins
    [React] React Fundamentals: Component Lifecycle
    [React ] React Fundamentals: Component Lifecycle
    [React] React Fundamentals: Component Lifecycle
  • 原文地址:https://www.cnblogs.com/heyour/p/12559688.html
Copyright © 2011-2022 走看看