zoukankan      html  css  js  c++  java
  • 【洛谷P2494】 [SDOI2011]保密(分数规划+最小割)

    洛谷

    题意:
    题意好绕好绕...不想写了。

    思路:

    • 首先类似于分数规划做法,二分答案得到到每个点的最小危险度。
    • 然后就是在一个二分图中,两边撤掉最少的点(相应代价为上面算出的危险度)及相应边,使得中间没有边。
    • 这就是一个最小割,最终的图中不存在(s)(t)的路径即可。

    代码如下:

    /*
     * Author:  heyuhhh
     * Created Time:  2019/10/31 14:47:58
     */
    #include <bits/stdc++.h>
    #define MP make_pair
    #define fi first
    #define se second
    #define sz(x) (int)(x).size()
    #define all(x) (x).begin(), (x).end()
    #define INF 0x3f3f3f3f
    #define Local
    #ifdef Local
      #define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
      void err() { std::cout << '
    '; }
      template<typename T, typename...Args>
      void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
    #else
      #define dbg(...)
    #endif
    void pt() {std::cout << '
    '; }
    template<typename T, typename...Args>
    void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
    using namespace std;
    typedef long long ll;
    typedef pair<int, int> pii;
    //head
    const int N = 705, M = 100005;
    const double eps = 1e-3;
    int n, m;
    
    #define _S heyuhhh
    template <class T>
    struct Dinic{
        struct Edge{
            int v, next;
            T flow;
            Edge(){}
            Edge(int v, int next, T flow) : v(v), next(next), flow(flow) {}
        }e[M << 1];
        int head[N], tot;
        int dep[N];
        void init() {
            memset(head, -1, sizeof(head)); tot = 0;
        }
        void adde(int u, int v, T w, T rw = 0) {
            e[tot] = Edge(v, head[u], w);
            head[u] = tot++;
            e[tot] = Edge(u, head[v], rw);
            head[v] = tot++;
        }
        bool BFS(int _S, int _T) {
            memset(dep, 0, sizeof(dep));
            queue <int> q; q.push(_S); dep[_S] = 1;
            while(!q.empty()) {
                int u = q.front(); q.pop();
                for(int i = head[u]; ~i; i = e[i].next) {
                    int v = e[i].v;
                    if(!dep[v] && e[i].flow > 0) {
                        dep[v] = dep[u] + 1;
                        q.push(v);
                    }
                }
            }
            return dep[_T] != 0;
        }
        T dfs(int _S, int _T, T a) {
            T flow = 0, f;
            if(_S == _T || a == 0) return a;
            for(int i = head[_S]; ~i; i = e[i].next) {
                int v = e[i].v;
                if(dep[v] != dep[_S] + 1) continue;
                f = dfs(v, _T, min(a, e[i].flow));
                if(f) {
                    e[i].flow -= f;
                    e[i ^ 1].flow += f;
                    flow += f;
                    a -= f;
                    if(a == 0) break;
                }
            }
            if(!flow) dep[_S] = -1;
            return flow;
        }
        T dinic(int _S, int _T) {
            T max_flow = 0;
            while(BFS(_S, _T)) max_flow += dfs(_S, _T, 1e18);
            return max_flow;
        }
    };
    Dinic <double> solver;
    
    struct Edge{
        int v, next, t;
        double w;  
    }e[M << 1];
    int head[N], tot;
    void adde(int u, int v, int t, double w) {
        e[tot].v = v; e[tot].t = t; e[tot].w = w; e[tot].next = head[u]; head[u] = tot++;
    }
    int n1, m1;
    double v[N];
    bool vis[N];
    double d[N];
    double spfa(int T, double x) {
        for(int i = 1; i <= n; i++) d[i] = 1e18, vis[i] = false ;
        d[n] = 0; vis[n] = true;
        queue <int> q; q.push(n);
        while(!q.empty()) {
            int u = q.front(); q.pop(); vis[u] = false;
            for(int i = head[u]; i != -1; i = e[i].next) {
                int v = e[i].v;
                double w = e[i].t - 1.0 * x * e[i].w;
                if(d[v] > d[u] + w) {
                    d[v] = d[u] + w;
                    if(!vis[v]) {
                        vis[v] = true; q.push(v);
                    }
                }
                if(v == T && d[v] < eps) return -1;
            }
        }
        return d[T];
    }
    
    
    void run(){
        memset(head, -1, sizeof(head)); tot = 0;
        for(int i = 1; i <= m; i++) {
            int a, b, t, s;
            cin >> a >> b >> t >> s;
            adde(a, b, t, s);
        }
        cin >> m1 >> n1;
        for(int i = 1; i <= n1; i++) {
            double l = 0, r = 1e9, ret = 1e9;
            while(r - l > eps) {
                double mid = (l + r) / 2;
                if(spfa(i, mid) <= eps) r = mid, ret = mid;
                else l = mid;
            }
            v[i] = ret;
        }
        //for(int i = 1; i <= n1; i++) cout << v[i] << ' ';
        //cout << '
    ';
        int S = 0, T = n1 + 1;
        solver.init();
        for(int i = 1; i <= n1; i++) {
            if(i & 1) solver.adde(S, i, v[i]);
            else solver.adde(i, T, v[i]);
        }
        for(int i = 1; i <= m1; i++) {
            int u, v; cin >> u >> v;
            solver.adde(u, v, 1e9);
        }
        double ans = solver.dinic(S, T);
        if(ans >= 1e9) cout << -1 << '
    ';
        else cout << ans << '
    ';
    }
    
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(0); cout.tie(0);
        cout << fixed << setprecision(1);
        while(cin >> n >> m) run();
    	return 0;
    }
    
  • 相关阅读:
    【BZOJ3193】[JLOI2013]地形生成 DP
    【BZOJ3782】上学路线 组合数+容斥+CRT
    Web安全学习笔记之Kali部署DVWA和OWASPBWA
    Web安全学习笔记之Kali配置国内软件更新源
    Python面试题之列表推导式
    前端学习笔记之HTML中的id,name,class区别
    Web安全学习笔记之Nmap脚本使用指南
    Web安全学习笔记之Nmap扫描原理与用法
    Web安全学习笔记之Openvas配置,使用,报告
    Python面试题之Python中应该使用%还是format来格式化字符串?
  • 原文地址:https://www.cnblogs.com/heyuhhh/p/11774672.html
Copyright © 2011-2022 走看看