zoukankan      html  css  js  c++  java
  • EOJ Monthly 2019.11 E. 数学题(莫比乌斯反演+杜教筛+拉格朗日插值)

    传送门

    题意:
    统计(k)元组个数((a_1,a_2,cdots,a_n),1leq a_ileq n)使得(gcd(a_1,a_2,cdots,a_k,n)=1)
    定义(f(n,k))为满足要求的(k)元组个数,现在要求出(sum_{i=1}^n f(i,k),1leq nleq 10^9,1leq kleq 1000)

    思路:
    首先来化简一下式子,题目要求的就是:

    [egin{aligned} &sum_{i=1}^nsum_{j=1}^ncdots sum_{k=1}^n gcd(i,j,cdots, k,n)=1\ =&sum_{i=1}^nsum_{j=1}^ncdots sum_{k=1}^nsum_{d|i,j,cdots,k,n}mu(d)\ =&sum_{d|n}mu(d)sum_{i=1}^{frac{n}{d}}sum_{j=1}^{frac{n}{d}}cdots sum_{k=1}^frac{n}{d}1\ =&sum_{d|n}mu(d) (frac{n}{d})^k end{aligned} ]

    套路到此结束~然后观察到这个式子其实是一个狄利克雷卷积的形式,(f(i)=mu(i),g(i)=i^k),上式则为:(f*g_{(n)})
    那么题目要求的就是这个卷积的前缀和,注意两个积性函数的卷积也是积性函数,因为(mu*I=varepsilon),所以我们再构造一个积性函数(h=I),直接上杜教筛就行了。最后的式子是:

    [h(1)cdot S(n) = sum_{i=1}^ng(i)-sum_{d=2}^n h(d)S(lfloorfrac{n}{d} floor) ]

    后半部分直接整除分块,至于(sum_{i=1}^ng(i)),拉格朗日插值能在(O(k))的时间复杂度解决。
    代码如下(比赛的时候写得稍微有点乱):

    /*
     * Author:  heyuhhh
     * Created Time:  2019/11/29 21:03:32
     */
    #include <iostream>
    #include <algorithm>
    #include <vector>
    #include <cmath>
    #include <set>
    #include <map>
    #include <iomanip>
    #define MP make_pair
    #define fi first
    #define se second
    #define sz(x) (int)(x).size()
    #define all(x) (x).begin(), (x).end()
    #define INF 0x3f3f3f3f
    #define Local
    #ifdef Local
      #define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
      void err() { std::cout << '
    '; }
      template<typename T, typename...Args>
      void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
    #else
      #define dbg(...)
    #endif
    void pt() {std::cout << '
    '; }
    template<typename T, typename...Args>
    void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
    using namespace std;
    typedef long long ll;
    typedef pair<int, int> pii;
    //head
    const int N = 1e4 + 5, MOD = 998244353;
    
    int n, k;
    ll qpow(ll a, ll b) {
        ll ans = 1;
        while(b) {
            if(b & 1) ans = ans * a % MOD;
            a = a * a % MOD;
            b >>= 1;   
        }
        return ans;   
    }
    struct Lagrange {
    	static const int SIZE = 1005;
    	ll f[SIZE], fac[SIZE], inv[SIZE], pre[SIZE], suf[SIZE];
    	int n;
    	inline void add(ll &x, int y) {
    		x += y;
    		if(x >= MOD) x -= MOD;
    	}
    	void init(int _n) {
    		n = _n;
    		fac[0] = 1;
    		for (int i = 1; i < SIZE; ++i) fac[i] = fac[i - 1] * i % MOD;
    	    inv[SIZE - 1] = qpow(fac[SIZE - 1], MOD - 2);
    		for (int i = SIZE - 1; i >= 1; --i) inv[i - 1] = inv[i] * i % MOD;
    		//设置f初值,可以根据需要修改
    		f[0] = 0;
    		for (int i = 1; i <= n; ++i)
    			f[i] = (f[i - 1] + qpow(i, k)) % MOD;
    	}
    	ll calc(ll x) {
    		if (x <= n) return f[x];
    		pre[0] = x % MOD;
    		for (int i = 1; i <= n; ++i) pre[i] = pre[i - 1] * ((x - i) % MOD) % MOD;
    		suf[n] = (x - n) % MOD;
    		for (int i = n - 1; i >= 0; --i) suf[i] = suf[i + 1] * ((x - i) % MOD) % MOD;
    		ll res = 0;
    		for (int i = 0; i <= n; ++i) {
    			ll tmp = f[i] * inv[n - i] % MOD * inv[i] % MOD;
    			if (i) tmp = tmp * pre[i - 1] % MOD;
    			if (i < n) tmp = tmp * suf[i + 1] % MOD;
    			if ((n - i) & 1) tmp = MOD - tmp;
    			add(res, tmp);
    		}
    		return res;
    	}
    }lagrange;
    int mu[N], p[N];
    bool chk[N];
    int pre[N];
    void init() {
        mu[1] = 1;
        int cnt = 0;
        for(int i = 2; i <= N - 1; i++) {
            if(!chk[i]) p[++cnt] = i, mu[i] = -1;
            for(int j = 1; j <= cnt && i * p[j] <= N - 1; j++) {
                chk[i * p[j]] = 1;
                if(i % p[j] == 0) {mu[i * p[j]] = 0; break;}
                mu[i * p[j]] = -mu[i]; 
            }
        }
        for(int i = 1; i <= N - 1; i++) {
            int res = 0;
            for(int j = 1; 1ll * j * j <= i; j++) {
                if(i % j == 0) {
                    int d1 = j, d2 = i / j;
                    res = (res + 1ll * mu[d1] * qpow(d2, k) % MOD) % MOD;
                    if(d1 != d2) res = (res + 1ll * mu[d2] * qpow(d1, k) % MOD) % MOD;
                    if(res < 0) res += MOD;
                }
            }   
            pre[i] = (pre[i - 1] + res) % MOD;
        }
    }
    map <int, ll> mp;
    ll djs(int n) {
        if(n < N) return pre[n];
        if(mp.find(n) != mp.end()) return mp[n];
        ll ans = lagrange.calc(n);
        for(int i = 2, j; i <= n; i = j + 1) {
            j = n / (n / i);
            ans -= 1ll * (j - i + 1) * djs(n / i) % MOD;
            if(ans < 0) ans += MOD;   
        }
        return mp[n] = ans;
    }
    
    void run(){
        lagrange.init(k + 1);
        init();
        int ans = djs(n);
        cout << ans << '
    ';
    }
    
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(0); cout.tie(0);
        cout << fixed << setprecision(20);
        while(cin >> n >> k) run();
        return 0;
    }
    
  • 相关阅读:
    某题3
    无向图Tarjan&&求树直径
    分布式消息中间件(一)设计
    大数据算法(一)亚线性算法
    SparkSQL
    MySQL索引
    Spark程序设计
    Java高并发网络编程(五)Netty应用
    Java高并发网络编程(四)Netty
    Java高并发网络编程(三)NIO
  • 原文地址:https://www.cnblogs.com/heyuhhh/p/11973681.html
Copyright © 2011-2022 走看看