zoukankan      html  css  js  c++  java
  • 【bzoj4555】[Tjoi2016&Heoi2016]求和(NTT+第二类斯特林数)

    传送门

    题意:

    [f(n)=sum_{i=0}^nsum_{j=0}^iegin{Bmatrix} i \ j end{Bmatrix}2^jj! ]

    思路:
    直接将第二类斯特林数展开有:

    [egin{aligned} f(n)=&sum_{i=0}^nsum_{j=0}^n2^jsum_{k=0}^{j}(-1)^k{jchoose k}(j-k)^{i}\ =&sum_{i=0}^nsum_{j=0}^n2^jj!sum_{k=0}^jfrac{(-1)^k}{k!}frac{(j-k)^i}{(j-k)!}\ =&sum_{j=0}^n2^jj!sum_{k=0}^jfrac{(-1)^k}{k!}frac{sum_{i=0}^n(j-k)^i}{(j-k)!} end{aligned} ]

    观察到后半部分为一个卷积的形式,我们令(displaystyle a_i=frac{(-1)^i}{i!},b_i=frac{sum_{j=0}^ni^j}{i!}),其中(sum_{j=0}^n i^j)为等比数列求和的形式。那么直接将这两个作为系数卷一卷即可。

    还有一种做法为展开递推式的做法,忘了怎么做了。。明天来补。
    upd:做法如下:

    [egin{aligned} f(n)=sum_{j=0}^n2^jj!sum_{i=j}^negin{Bmatrix} i \ j end{Bmatrix} end{aligned} ]

    (displaystyle F(j)=sum_{i=j}^negin{Bmatrix} i \ j end{Bmatrix}),之后将第二类斯特林数用递推式展开:

    [egin{aligned} F(j)=&sum_{i=j}^negin{Bmatrix} i \ j end{Bmatrix}\ =&sum_{i=j}^negin{Bmatrix} i - 1 \ j - 1 end{Bmatrix}+sum_{i=j}^njegin{Bmatrix} i - 1 \ j end{Bmatrix}\ =&F(j-1)-egin{Bmatrix} n \ j - 1 end{Bmatrix}+jF(j)-jegin{Bmatrix} n \ j end{Bmatrix}\ =&F(j - 1)+jF(j)-egin{Bmatrix} n + 1 \ j end{Bmatrix} end{aligned} ]

    所以最后有:

    [F(j)=frac{F(j-1)-egin{Bmatrix} n + 1 \ j end{Bmatrix}}{1-j} ]

    那么预处理出(n+1)这一行的斯特林数,然后直接用递推式算出(F)即可。
    代码是第二种方法:

    /*
     * Author:  heyuhhh
     * Created Time:  2019/12/12 11:16:54
     */
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <vector>
    #include <cmath>
    #include <set>
    #include <map>
    #include <queue>
    #include <iomanip>
    #define MP make_pair
    #define fi first
    #define se second
    #define sz(x) (int)(x).size()
    #define all(x) (x).begin(), (x).end()
    #define INF 0x3f3f3f3f
    #define Local
    #ifdef Local
      #define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
      void err() { std::cout << '
    '; }
      template<typename T, typename...Args>
      void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
    #else
      #define dbg(...)
    #endif
    void pt() {std::cout << '
    '; }
    template<typename T, typename...Args>
    void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
    using namespace std;
    typedef long long ll;
    typedef pair<int, int> pii;
    //head
    const int N = 4e5 + 5, M = 2e6 + 5, P = 998244353, G = 3, Gi = 332748118, MOD = 998244353;
    int n, m, lim = 1, L, r[N];
    ll a[N], b[N];//注意空间要开四倍
    ll qpow(ll a, ll k) {
        ll ans = 1;
        while(k) {
            if(k & 1) ans = (ans * a ) % P;
            a = (a * a) % P;
            k >>= 1;
        }
        return ans;
    }
    void NTT(ll *A, int type) {
        for(int i = 0; i < lim; i++)
            if(i < r[i]) swap(A[i], A[r[i]]);
        for(int mid = 1; mid < lim; mid <<= 1) {
            ll Wn = qpow( type == 1 ? G : Gi , (P - 1) / (mid << 1)); //Wn = g ^ ((p - 1) / n)  (mod p)
            for(int j = 0; j < lim; j += (mid << 1)) {
                ll w = 1;
                for(int k = 0; k < mid; k++, w = (w * Wn) % P) {
                     int x = A[j + k], y = w * A[j + k + mid] % P;
                     A[j + k] = (x + y) % P,
                     A[j + k + mid] = (x - y + P) % P;
                }
            }
        }
    }
    void solve(ll *a, ll *b) {
        while(lim <= n + m) lim <<= 1, L++;
        for(int i = 0; i < lim; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (L - 1));
        for(int i = m + 1; i < lim; i++) a[i] = 0;  //a,b need init
        for(int i = m + 1; i < lim; i++) b[i] = 0;
        NTT(a, 1); NTT(b, 1);
        for(int i = 0; i < lim; i++) a[i] = (a[i] * b[i]) % P;
        NTT(a, -1);
        ll inv = qpow(lim, P - 2);
        for(int i = 0; i < lim; i++) a[i] = a[i] * inv % P;
    }
    
    int fac[N], inv[N], f[N], two[N];
    
    void init() {
        fac[0] = 1;
        for(int i = 1; i < N; i++) fac[i] = 1ll * fac[i - 1] * i % MOD;
        inv[N - 1] = qpow(fac[N - 1], MOD - 2);
        for(int i = N - 2; i >= 0; i--) inv[i] = 1ll * inv[i + 1] * (i + 1) % MOD;
        for(int i = 0; i <= m; i++) {
            a[i] = (i & 1) ? MOD - inv[i] : inv[i];
            b[i] = 1ll * qpow(i, n + 1) * inv[i] % MOD;
        }
        solve(a, b);
        f[1] = n;
        for(int i = 2; i <= n; i++) f[i] = 1ll * (a[i] - f[i - 1] + MOD) % MOD * qpow(i - 1, MOD - 2) % MOD;
        two[0] = 1;
        for(int i = 1; i <= n; i++) two[i] = 1ll * two[i - 1] * 2 % MOD;
    }
    
    void run(){
        cin >> n; m = n + 1;
        init();
        int ans = 1;
        for(int i = 1; i <= n; i++) {
            ans = (ans + 1ll * two[i] * fac[i] % MOD * f[i] % MOD) % MOD;
        }
        cout << ans << '
    ';
    }
    
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(0); cout.tie(0);
        cout << fixed << setprecision(20);
        run();
        return 0;
    }
    
  • 相关阅读:
    更好地限制一个UITextField的输入长度
    训练集(train set) 验证集(validation set) 测试集(test set)
    主流机器学习[xgb, lgb, Keras, LR]
    python pandas (ix & iloc &loc) 的区别
    机器学习:数据预处理之独热编码(One-Hot)
    SPARK第一天
    Spark简介
    scatter
    协方差和相关关系
    SQL存储过程
  • 原文地址:https://www.cnblogs.com/heyuhhh/p/12052210.html
Copyright © 2011-2022 走看看