zoukankan      html  css  js  c++  java
  • 【bzoj4589】4589: Hard Nim(FWT+快速幂)

    传送门

    题意:
    (n)个不超过(m)的质数,并且异或起来为(0)的方案数。
    (nleq 10^9,mleq 50000)

    思路:
    (f_i)表示(i)是否为质数,那么当(n=2)时,答案即为(f*f(xor))在常数项(即异或值为(0))处的方案数。
    考虑(n>2),如果(n)比较小,我们就直接一项一项来乘;如果(n)比较大的话,我们直接做完(FWT)过后求个快速幂,然后(IFWT)回去就行。
    其实就是给一项一项乘加了个速。

    /*
     * Author:  heyuhhh
     * Created Time:  2020/4/28 9:44:14
     */
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <cstdio>
    #include <vector>
    #include <cmath>
    #include <set>
    #include <map>
    #include <queue>
    #include <iomanip>
    #include <assert.h>
    #define MP make_pair
    #define fi first
    #define se second
    #define pb push_back
    #define sz(x) (int)(x).size()
    #define all(x) (x).begin(), (x).end()
    #define INF 0x3f3f3f3f
    using namespace std;
    typedef long long ll;
    typedef pair<int, int> pii;
    //head
    const int N = 50000 + 5, MOD = 1e9 + 7;
    
    bool vis[N];
    void init() {
        vis[0] = vis[1] = true;
        for (int i = 2; i < N; i++) {
            if (!vis[i]) {
                for (ll j = 1ll * i * i; j < N; j += i) {
                    vis[j] = true;   
                }
            }   
        }
    }
    
    int n, m;
    int f[N << 2];
    
    void FWT_xor(int *a, int n, int op) {
        static int inv2 = (MOD + 1) / 2;
        for(int i = 1; i < n; i <<= 1)
            for(int p = i << 1, j = 0; j < n; j += p)
                for(int k = 0; k < i; k++) {
                    int X = a[j + k], Y = a[i + j + k];
                    a[j + k] = (X + Y) % MOD; a[i + j + k] = (X + MOD - Y) % MOD;
                    if(op == -1) a[j + k] = 1ll * a[j + k] * inv2 % MOD, a[i + j + k] = 1ll * a[i + j + k] * inv2 % MOD;
                }                
    }
    
    int qpow(ll a, ll b) {
        ll res = 1;
        while (b) {
            if (b & 1) res = res * a % MOD;
            a = a * a % MOD;
            b >>= 1;
        }   
        return res;
    }
    
    void run() {
        memset(f, 0, sizeof(f));
        for (int i = 0; i <= m; i++) {
            if (!vis[i]) ++f[i];
        }
        int l = 1;
        while (l < m + 1) l <<= 1;
        FWT_xor(f, l, 1);
        for (int i = 0; i < l; i++) {
            f[i] = qpow(f[i], n);
        }
        FWT_xor(f, l, -1);
        cout << f[0] << '
    ';
    }
    
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(0); cout.tie(0);
        cout << fixed << setprecision(20);
        init();
        while (cin >> n >> m) run();
        return 0;
    }
    
  • 相关阅读:
    2、ansilbe常用模块详解及inventory介绍
    1、Ansible简介及简单安装、使用
    dhcp、tftp及pxe简介
    php-fpm常见错误
    php之编译安装
    nginx之常见错误
    ssh之秘钥登陆
    MySQL之主从复制
    Python之虚拟环境
    php调试工具之firePHP
  • 原文地址:https://www.cnblogs.com/heyuhhh/p/12805532.html
Copyright © 2011-2022 走看看