题意:
求(n)个不超过(m)的质数,并且异或起来为(0)的方案数。
(nleq 10^9,mleq 50000)。
思路:
令(f_i)表示(i)是否为质数,那么当(n=2)时,答案即为(f*f(xor))在常数项(即异或值为(0))处的方案数。
考虑(n>2),如果(n)比较小,我们就直接一项一项来乘;如果(n)比较大的话,我们直接做完(FWT)过后求个快速幂,然后(IFWT)回去就行。
其实就是给一项一项乘加了个速。
/*
* Author: heyuhhh
* Created Time: 2020/4/28 9:44:14
*/
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#include <iomanip>
#include <assert.h>
#define MP make_pair
#define fi first
#define se second
#define pb push_back
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 50000 + 5, MOD = 1e9 + 7;
bool vis[N];
void init() {
vis[0] = vis[1] = true;
for (int i = 2; i < N; i++) {
if (!vis[i]) {
for (ll j = 1ll * i * i; j < N; j += i) {
vis[j] = true;
}
}
}
}
int n, m;
int f[N << 2];
void FWT_xor(int *a, int n, int op) {
static int inv2 = (MOD + 1) / 2;
for(int i = 1; i < n; i <<= 1)
for(int p = i << 1, j = 0; j < n; j += p)
for(int k = 0; k < i; k++) {
int X = a[j + k], Y = a[i + j + k];
a[j + k] = (X + Y) % MOD; a[i + j + k] = (X + MOD - Y) % MOD;
if(op == -1) a[j + k] = 1ll * a[j + k] * inv2 % MOD, a[i + j + k] = 1ll * a[i + j + k] * inv2 % MOD;
}
}
int qpow(ll a, ll b) {
ll res = 1;
while (b) {
if (b & 1) res = res * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return res;
}
void run() {
memset(f, 0, sizeof(f));
for (int i = 0; i <= m; i++) {
if (!vis[i]) ++f[i];
}
int l = 1;
while (l < m + 1) l <<= 1;
FWT_xor(f, l, 1);
for (int i = 0; i < l; i++) {
f[i] = qpow(f[i], n);
}
FWT_xor(f, l, -1);
cout << f[0] << '
';
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
init();
while (cin >> n >> m) run();
return 0;
}