zoukankan      html  css  js  c++  java
  • 【BZOJ4698】[SDOI2008]Sandy的卡片

    【BZOJ4698】[SDOI2008]Sandy的卡片

    题面

    flag倒了。

    bzoj

    洛谷

    题解

    首先题目的区间加很丑对吧,

    将每个串差分一下,就可以转化为

    求:

    给定(N)个串,求他们的最长公共子串。

    怎么办呢,按照后缀数组常用套路

    我们用不同的未曾用过的字符将这些串连接起来

    我们将(lcp)大于(mid)的串分组

    如果一组内串的个数大于等于(N)个,就证明可以(return;1)

    否则若没有一组大于等于(N)返回(0)

    代码

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring> 
    #include <cmath> 
    #include <algorithm>
    using namespace std; 
    inline int gi() {
        register int data = 0, w = 1;
        register char ch = 0;
        while (!isdigit(ch) && ch != '-') ch = getchar(); 
        if (ch == '-') w = -1, ch = getchar();
        while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
        return w * data; 
    }
    const int MAX_N = 2e6 + 5; 
    int N, T, a[MAX_N], b[MAX_N], vis[MAX_N]; 
    int sa[MAX_N], rnk[MAX_N], lcp[MAX_N]; 
    void GetSA() {
    #define cmp(i, j, k) (y[i] == y[j] && y[i + k] == y[j + k]) 
        static int x[MAX_N], y[MAX_N], bln[MAX_N];
        int M = 1e6; 
        for (int i = 1; i <= N; i++) bln[x[i] = a[i]]++; 
        for (int i = 1; i <= M; i++) bln[i] += bln[i - 1]; 
        for (int i = N; i >= 1; i--) sa[bln[x[i]]--] = i; 
        for (int k = 1; k <= N; k <<= 1) { 
            int p = 0; 
            for (int i = 0; i <= M; i++) y[i] = 0; 
            for (int i = N - k + 1; i <= N; i++) y[++p] = i; 
            for (int i = 1; i <= N; i++) if (sa[i] > k) y[++p] = sa[i] - k; 
            for (int i = 0; i <= M; i++) bln[i] = 0; 
            for (int i = 1; i <= N; i++) bln[x[y[i]]]++; 
            for (int i = 1; i <= M; i++) bln[i] += bln[i - 1]; 
            for (int i = N; i >= 1; i--) sa[bln[x[y[i]]]--] = y[i]; 
            swap(x, y); x[sa[1]] = p = 1; 
            for (int i = 2; i <= N; i++) x[sa[i]] = cmp(sa[i], sa[i - 1], k) ? p : ++p; 
            if (p >= N) break;
            M = p; 
        } 
    }
    void GetLcp() { 
        for (int i = 1; i <= N; i++) rnk[sa[i]] = i; 
        for (int i = 1, j = 0; i <= N; i++) {
            if (j) --j; 
            while (a[i + j] == a[sa[rnk[i] - 1] + j]) ++j; 
            lcp[rnk[i]] = j; 
        } 
    } 
    int col[MAX_N], tot; 
    bool check(int v) {
        ++tot; int cnt = 0; 
        for (int i = 1; i <= N; i++) { 
            if (lcp[i] < v) ++tot, cnt = 0; 
            if (col[vis[sa[i]]] != tot) col[vis[sa[i]]] = tot, ++cnt; 
            if (cnt == T) return 1; 
        } 
        return 0; 
    } 
    const int dlt = 5e4; 
    int main () { 
        T = gi(); 
        for (int i = 1; i <= T; i++) { 
            int m = gi(); 
            for (int j = 1; j <= m; j++) b[j] = gi(); 
            for (int j = 1; j <= m; j++) b[j] = b[j + 1] - b[j] + dlt; 
            for (int j = 1; j < m; j++) a[++N] = b[j], vis[N] = i; 
            a[++N] = i + 5e5; 
        }
        GetSA(); GetLcp(); 
        int l = 0, r = N, ans = 0; 
        while (l <= r) { 
            int mid = (l + r) >> 1; 
            if (check(mid)) l = mid + 1, ans = mid;
            else r = mid - 1; 
        } 
        printf("%d
    ", ans + 1); 
        return 0; 
    } 
    
  • 相关阅读:
    读书笔记——吴军《态度》
    JZYZOJ1237 教授的测试 dfs
    NOI1999 JZYZOJ1289 棋盘分割 dp 方差的数学结论
    [JZYZOJ 1288][洛谷 1005] NOIP2007 矩阵取数 dp 高精度
    POJ 3904 JZYZOJ 1202 Sky Code 莫比乌斯反演 组合数
    POJ2157 Check the difficulty of problems 概率DP
    HDU3853 LOOPS 期望DP 简单
    Codeforces 148D. Bag of mice 概率dp
    POJ3071 Football 概率DP 简单
    HDU4405 Aeroplane chess 飞行棋 期望dp 简单
  • 原文地址:https://www.cnblogs.com/heyujun/p/10305521.html
Copyright © 2011-2022 走看看