【LG3206】[HNOI2010]城市建设
题面
题解
有一种又好想、码得又舒服的做法叫线段树分治+(LCT)
但是因为常数过大,无法跑过此题。
所以这里主要介绍另外一种玄学(cdq)分治
对时间进行分治
因为每次分治都必须要缩小数据规模
而我们这里貌似无法满足这个要求
引进了下面的玄学东西:
设当前边集的大小为(n),分治区间为([l,r])
则对于分治区间内的边,我们有如下两种剪枝:
((1)Contraction:)
将现在所有分治区间内的边权设为(-infty),做一遍最小生成树
那么我们在最小生成树里面的除开边权为(-infty)的边都要选,称这些边为必选边。
((2)Reduction:)
将现在所有分治区间内的边设为(infty),做一遍最小生成树,
那么此时没有出现在最小生成树中间的边一定不会选到,称为无用边。
那么我们每次的无用边、必选边就无需考虑了
我们再用(cdq)分治修改序列,就可以达到减小数据规模的目的啦
复杂度网上说是(O(nlog^2)),但是不会证啊。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
typedef long long ll;
const int INF = 1e9;
const int MAX_N = 5e4 + 5;
struct Mdy { int x, y; } p[MAX_N];
struct Edge { int u, v, w, id; } e[18][MAX_N], tmp[MAX_N], stk[MAX_N];
inline bool operator < (const Edge &l, const Edge &r) { return l.w < r.w; }
int N, M, Q, sum[18];
int a[MAX_N], c[MAX_N], fa[MAX_N], rnk[MAX_N];
ll ans[MAX_N];
int getf(int x) { return (x == fa[x]) ? x : fa[x] = getf(fa[x]); }
void unite(int x, int y) {
x = getf(x), y = getf(y);
if (x == y) return ;
if (rnk[x] != rnk[y]) (rnk[x] > rnk[y]) ? fa[y] = x : fa[x] = y;
else fa[x] = y, rnk[y]++;
}
void Set(int n, Edge *a) {
for (int i = 1; i <= n; i++) {
fa[a[i].u] = a[i].u;
fa[a[i].v] = a[i].v;
rnk[a[i].v] = rnk[a[i].u] = 1;
}
}
void Contraction(int &n, ll &val) {
int top = 0;
Set(n, tmp); sort(&tmp[1], &tmp[n + 1]);
for (int i = 1; i <= n; i++)
if (getf(tmp[i].u) ^ getf(tmp[i].v))
unite(tmp[i].u, tmp[i].v), stk[++top] = tmp[i];
Set(top, stk);
for (int i = 1; i <= top; i++)
if (stk[i].w != -INF && getf(stk[i].u) ^ getf(stk[i].v))
val += stk[i].w, unite(stk[i].u, stk[i].v);
top = 0;
for (int i = 1; i <= n; i++)
if (getf(tmp[i].u) ^ getf(tmp[i].v))
stk[++top] = (Edge){getf(tmp[i].u), getf(tmp[i].v), tmp[i].w, tmp[i].id};
for (int i = 1; i <= top; i++) c[tmp[i].id] = i, tmp[i] = stk[i];
n = top;
}
void Reduction(int &n) {
int top = 0;
Set(n, tmp); sort(&tmp[1], &tmp[n + 1]);
for (int i = 1; i <= n; i++)
if (getf(tmp[i].u) ^ getf(tmp[i].v))
unite(tmp[i].u, tmp[i].v), stk[++top] = tmp[i];
else if (tmp[i].w == INF) stk[++top] = tmp[i];
for (int i = 1; i <= top; i++) c[tmp[i].id] = i, tmp[i] = stk[i];
n = top;
}
void Div(int l, int r, int dep, ll val) {
int n = sum[dep];
if (l == r) a[p[l].x] = p[l].y;
for (int i = 1; i <= n; i++) {
e[dep][i].w = a[e[dep][i].id];
tmp[i] = e[dep][i], c[tmp[i].id] = i;
}
if (l == r) {
ans[l] = val, Set(n, tmp);
sort(&tmp[1], &tmp[n + 1]);
for (int i = 1; i <= n; i++)
if (getf(tmp[i].u) != getf(tmp[i].v))
unite(tmp[i].u, tmp[i].v), ans[l] += tmp[i].w;
return ;
}
for (int i = l; i <= r; i++) tmp[c[p[i].x]].w = -INF;
Contraction(n, val);
for (int i = l; i <= r; i++) tmp[c[p[i].x]].w = INF;
Reduction(n);
for (int i = 1; i <= n; i++) e[dep + 1][i] = tmp[i];
sum[dep + 1] = n;
int mid = (l + r) >> 1;
Div(l, mid, dep + 1, val);
Div(mid + 1, r, dep + 1, val);
}
int main () {
N = gi(), M = gi(), Q = gi();
for (int i = 1; i <= M; i++) e[0][i] = (Edge){gi(), gi(), a[i] = gi(), i};
for (int i = 1; i <= Q; i++) p[i] = (Mdy){gi(), gi()};
sum[0] = M; Div(1, Q, 0, 0);
for (int i = 1; i <= Q; i++) printf("%lld
", ans[i]);
return 0;
}