zoukankan      html  css  js  c++  java
  • 【LG4491】[HAOI2018]染色

    【LG4491】[HAOI2018]染色

    题面

    洛谷

    题解

    颜色的数量不超过(lim=min(m,frac nS))

    考虑容斥,计算恰好出现(S)次的颜色至少(i)种的方案数(f[i]),钦定(i)种颜色至少放(S)

    (m)种颜色,那么要乘上(C_m^i)

    然后这(n)个位置分为(i+1)个部分:被钦定的(i)种颜色,每个(S)个;剩下(m-i)种颜色,一共(n-iS)种颜色,可以看作可重的全排列数,那么就有(frac{n!}{(S!)^i(n-iS)!}),但是后面情况的每个部分有(m-i)种取法,所以还要乘上((m-i)^{n-iS})

    ( herefore f[i]=C_m^ifrac{n!}{(S!)^i(n-iS)!}(m-i)^{n-iS})

    那么答案是什么呢?

    (ans[i]:)恰好出现(S)次的颜色恰好(i)种的方案数

    用容斥搞一下:

    [ans[i]=sum_{j=i}^{lim}(-1)^{j-i}C_j^if[j]\ =sum_{j=i}^{lim}(-1)^{j-i}frac{j!}{i!(j-i)!}f[j]\ Leftrightarrow ans[i]*i!=sum_{j=i}^{lim}frac{(-1)^{j-i}}{(j-i)!}f[j]*j! ]

    然后(NTT)就可以了。

    代码

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring> 
    #include <cmath> 
    #include <algorithm>
    using namespace std; 
    inline int gi() {
        register int data = 0, w = 1;
        register char ch = 0;
        while (!isdigit(ch) && ch != '-') ch = getchar(); 
        if (ch == '-') w = -1, ch = getchar();
        while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
        return w * data; 
    }
    const int Mod = 1004535809;
    int fpow(int x, int y) {
    	int res = 1; 
    	while (y) {
    		if (y & 1) res = 1ll * res * x % Mod; 
    		x = 1ll * x * x % Mod; 
    		y >>= 1; 
    	} 
    	return res; 
    } 
    const int G = 3, iG = fpow(G, Mod - 2); 
    const int MAX_N = 1e7 + 5, MAX_M = 1e5 + 5; 
    int fac[MAX_N]; 
    int C(int n, int m) {
    	if (m > n) return 0; 
    	return 1ll * fac[n] * fpow(fac[n - m], Mod - 2) % Mod * fpow(fac[m], Mod - 2) % Mod;
    } 
    int N, M, S, Limit, mx; 
    int W[MAX_N], A[MAX_N << 2], B[MAX_N << 2], rev[MAX_N << 2]; 
    void NTT(int *p, int op) { 
    	for (int i = 0; i < Limit; i++) if (rev[i] > i) swap(p[rev[i]], p[i]); 
    	for (int i = 1; i < Limit; i <<= 1) {
    		int rot = fpow(op == 1 ? G : iG, (Mod - 1) / (i << 1)); 
    		for (int j = 0, pls = (i << 1); j < Limit; j += pls) {
    			int w = 1; 
    			for (int k = 0; k < i; k++, w = 1ll * w * rot % Mod) {
    				int x = p[j + k], y = 1ll * w * p[i + j + k] % Mod; 
    				p[j + k] = (x + y) % Mod, p[i + j + k] = (x - y + Mod) % Mod; 
    			} 
    		} 
    	} 
    } 
    int main () { 
    	N = gi(), M = gi(), S = gi(); 
    	for (int i = 0; i <= M; i++) W[i] = gi(); 
    	mx = max(N, M); 
    	fac[0] = 1; for (int i = 1; i <= mx; i++) fac[i] = 1ll * fac[i - 1] * i % Mod; 
    	int mn = min(M, N / S); 
    	Limit = 1; int P = 0; 
    	while (Limit < (mn + 1) << 1) Limit <<= 1, ++P; 
    	for (int i = 0; i <= mn; i++)
    		A[i] = 1ll * fac[i] * C(M, i) % Mod *
    			fac[N] % Mod * fpow(M - i, N - i * S) % Mod *
    			fpow(1ll * fpow(fac[S], i) * fac[N - i * S] % Mod, Mod - 2) % Mod; 
    	for (int i = 0; i <= mn; i++) {
    		B[i] = fpow(fac[mn - i], Mod - 2); 
    		if ((mn - i) & 1) B[i] = Mod - B[i]; 
    	} 
    	for (int i = 0; i < Limit; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (P - 1)); 
    	NTT(A, 1), NTT(B, 1); 
    	for (int i = 0; i < Limit; i++) A[i] = 1ll * A[i] * B[i] % Mod; 
    	NTT(A, 0); 
    	int inv = fpow(Limit, Mod - 2); 
    	for (int i = 0; i < Limit; i++) A[i] = 1ll * inv * A[i] % Mod;
    	int ans = 0; 
    	for (int i = 0; i <= mn; i++) ans = (ans + 1ll * W[i] * A[mn + i] % Mod * fpow(fac[i], Mod - 2) % Mod) % Mod;
    	printf("%d
    ", ans); 
    	return 0; 
    } 
    
  • 相关阅读:
    Java 时钟
    mybatis中的#和$的区别
    vuex数据管理-数据共享
    vuex数据管理-数据适配
    vue双向数据绑定原理
    基于VUE的SPA单页应用开发-加载性能篇
    vue2.0读书笔记3
    移动端软键盘收起监听
    移动端模态窗口的滚动和橡皮筋问题解决方案
    window.history的跳转实质-HTML5 history API 解析
  • 原文地址:https://www.cnblogs.com/heyujun/p/10334940.html
Copyright © 2011-2022 走看看