【LG1600】[NOIP2016]天天爱跑步
题面
题解
考虑一条路径(S ightarrow T)是如何给一个观测点(x)造成贡献的,
一种是从(x)的子树内出来,另外一种是从(x)的子树外进去。
令(S,T)的最近公共祖先为(lca),那么这条路径可表示为(S ightarrow lca ightarrow T)(如果(lca=S;or;T)可以特判)。
考虑两种情况如何贡献,
首先在(S ightarrow lca)上的点,需要满足(dep_S-dep_x=w_x),
而对于(lca ightarrow T)上的点,需要满足((dep_S-dep_{lca})+(dep_x-dep_{lca})=w_xLeftrightarrow dep_S-2dep_{lca}=w_x-dep_x)。
这样的话,对于一条路径,我们可以拆成两条分别对其进行差分,在用一颗线段树在其对应位置上(pm 1),然后线段树合并在对应位置上查即可。
具体实现细节详见代码。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int MAX_N = 3e5 + 5;
struct Graph { int to, next; } e[MAX_N << 1];
int fir[MAX_N], e_cnt;
void clearGraph() { memset(fir, -1, sizeof(fir)); e_cnt = 0; }
void Add_Edge(int u, int v) { e[e_cnt] = (Graph){v, fir[u]}, fir[u] = e_cnt++; }
int fa[MAX_N], top[MAX_N], dep[MAX_N], size[MAX_N], son[MAX_N];
void dfs1(int x) {
size[x] = 1, dep[x] = dep[fa[x]] + 1;
for (int i = fir[x]; ~i; i = e[i].next) {
int v = e[i].to; if (v == fa[x]) continue;
fa[v] = x, dfs1(v), size[x] += size[v];
if (size[son[x]] < size[v]) son[x] = v;
}
}
void dfs2(int x, int tp) {
top[x] = tp;
if (son[x]) dfs2(son[x], tp);
for (int i = fir[x]; ~i; i = e[i].next) {
int v = e[i].to; if (v == son[x] || v == fa[x]) continue;
dfs2(v, v);
}
}
int LCA(int x, int y) {
while (top[x] != top[y]) {
if (dep[top[x]] < dep[top[y]]) swap(x, y);
x = fa[top[x]];
}
return dep[x] < dep[y] ? x : y;
}
struct Path { int s, t, lca; } p[MAX_N];
int N, M, w[MAX_N], ans[MAX_N];
vector<int> Add1[MAX_N], Del1[MAX_N], Add2[MAX_N], Del2[MAX_N];
struct Node { int ls, rs, v; } t[MAX_N << 6];
int rt1[MAX_N], rt2[MAX_N], tot;
void insert(int &o, int l, int r, int pos, int op) {
if (!o) o = ++tot;
t[o].v += op;
if (l == r) return ;
int mid = (l + r) >> 1;
if (pos <= mid) insert(t[o].ls, l, mid, pos, op);
else insert(t[o].rs, mid + 1, r, pos, op);
}
int merge(int x, int y, int l, int r) {
if (!x || !y) return x | y;
if (l == r) return t[x].v += t[y].v, x;
int mid = (l + r) >> 1;
t[x].ls = merge(t[x].ls, t[y].ls, l, mid);
t[x].rs = merge(t[x].rs, t[y].rs, mid + 1, r);
return t[x].v = t[t[x].ls].v + t[t[x].rs].v, x;
}
int query(int o, int l, int r, int pos) {
if (!o) return 0;
if (l == r) return t[o].v;
int mid = (l + r) >> 1;
if (pos <= mid) return query(t[o].ls, l, mid, pos);
else return query(t[o].rs, mid + 1, r, pos);
}
void Dfs(int x) {
for (int i = fir[x]; ~i; i = e[i].next) {
int v = e[i].to; if (v == fa[x]) continue;
Dfs(v);
rt1[x] = merge(rt1[x], rt1[v], -N, N << 1);
rt2[x] = merge(rt2[x], rt2[v], -N, N << 1);
}
for (int i : Add1[x]) insert(rt1[x], -N, N << 1, i, 1);
for (int i : Add2[x]) insert(rt2[x], -N, N << 1, i, 1);
for (int i : Del1[x]) insert(rt1[x], -N, N << 1, i, -1);
for (int i : Del2[x]) insert(rt2[x], -N, N << 1, i, -1);
ans[x] = query(rt1[x], -N, N << 1, w[x] + dep[x]) + query(rt2[x], -N, N << 1, w[x] - dep[x]);
}
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
clearGraph();
N = gi(), M = gi();
for (int i = 1; i < N; i++) {
int u = gi(), v = gi();
Add_Edge(u, v), Add_Edge(v, u);
}
dfs1(1), dfs2(1, 1);
for (int i = 1; i <= N; i++) w[i] = gi();
for (int i = 1; i <= M; i++) {
int s = gi(), t = gi(), lca = LCA(s, t);
int d1 = dep[s], d2 = -dep[s];
if (lca == t) { Add1[s].push_back(d1), Del1[fa[lca]].push_back(d1); continue; }
if (lca == s) { Add2[t].push_back(d2), Del2[fa[lca]].push_back(d2); continue; }
d2 = dep[s] - 2 * dep[lca];
Add1[s].push_back(d1), Del1[fa[lca]].push_back(d1);
Add2[t].push_back(d2), Del2[lca].push_back(d2);
}
Dfs(1);
for (int i = 1; i <= N; i++) printf("%d ", ans[i]);
putchar('
');
return 0;
}