zoukankan      html  css  js  c++  java
  • 【LG1600】[NOIP2016]天天爱跑步

    【LG1600】[NOIP2016]天天爱跑步

    题面

    洛谷

    题解

    考虑一条路径(S ightarrow T)是如何给一个观测点(x)造成贡献的,

    一种是从(x)的子树内出来,另外一种是从(x)的子树外进去。

    (S,T)的最近公共祖先为(lca),那么这条路径可表示为(S ightarrow lca ightarrow T)(如果(lca=S;or;T)可以特判)。

    考虑两种情况如何贡献,

    首先在(S ightarrow lca)上的点,需要满足(dep_S-dep_x=w_x)

    而对于(lca ightarrow T)上的点,需要满足((dep_S-dep_{lca})+(dep_x-dep_{lca})=w_xLeftrightarrow dep_S-2dep_{lca}=w_x-dep_x)

    这样的话,对于一条路径,我们可以拆成两条分别对其进行差分,在用一颗线段树在其对应位置上(pm 1),然后线段树合并在对应位置上查即可。

    具体实现细节详见代码。

    代码

    #include <iostream> 
    #include <cstdio> 
    #include <cstdlib> 
    #include <cstring> 
    #include <cmath> 
    #include <algorithm> 
    #include <vector> 
    using namespace std; 
    inline int gi() { 
        register int data = 0, w = 1; 
        register char ch = 0; 
        while (!isdigit(ch) && ch != '-') ch = getchar(); 
        if (ch == '-') w = -1, ch = getchar(); 
        while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar(); 
        return w * data; 
    } 
    const int MAX_N = 3e5 + 5; 
    struct Graph { int to, next; } e[MAX_N << 1]; 
    int fir[MAX_N], e_cnt; 
    void clearGraph() { memset(fir, -1, sizeof(fir)); e_cnt = 0; } 
    void Add_Edge(int u, int v) { e[e_cnt] = (Graph){v, fir[u]}, fir[u] = e_cnt++; }
    int fa[MAX_N], top[MAX_N], dep[MAX_N], size[MAX_N], son[MAX_N]; 
    void dfs1(int x) { 
    	size[x] = 1, dep[x] = dep[fa[x]] + 1; 
    	for (int i = fir[x]; ~i; i = e[i].next) { 
    		int v = e[i].to; if (v == fa[x]) continue; 
    		fa[v] = x, dfs1(v), size[x] += size[v]; 
    		if (size[son[x]] < size[v]) son[x] = v; 
    	} 
    } 
    void dfs2(int x, int tp) { 
    	top[x] = tp; 
    	if (son[x]) dfs2(son[x], tp); 
    	for (int i = fir[x]; ~i; i = e[i].next) {
    		int v = e[i].to; if (v == son[x] || v == fa[x]) continue; 
    		dfs2(v, v); 
    	} 
    } 
    int LCA(int x, int y) { 
    	while (top[x] != top[y]) { 
    		if (dep[top[x]] < dep[top[y]]) swap(x, y); 
    		x = fa[top[x]]; 
    	} 
    	return dep[x] < dep[y] ? x : y; 
    } 
    struct Path { int s, t, lca; } p[MAX_N]; 
    int N, M, w[MAX_N], ans[MAX_N]; 
    vector<int> Add1[MAX_N], Del1[MAX_N], Add2[MAX_N], Del2[MAX_N]; 
    struct Node { int ls, rs, v; } t[MAX_N << 6]; 
    int rt1[MAX_N], rt2[MAX_N], tot; 
    void insert(int &o, int l, int r, int pos, int op) { 
    	if (!o) o = ++tot; 
    	t[o].v += op; 
    	if (l == r) return ; 
    	int mid = (l + r) >> 1; 
    	if (pos <= mid) insert(t[o].ls, l, mid, pos, op); 
    	else insert(t[o].rs, mid + 1, r, pos, op); 
    } 
    int merge(int x, int y, int l, int r) { 
    	if (!x || !y) return x | y; 
    	if (l == r) return t[x].v += t[y].v, x; 
    	int mid = (l + r) >> 1; 
    	t[x].ls = merge(t[x].ls, t[y].ls, l, mid); 
    	t[x].rs = merge(t[x].rs, t[y].rs, mid + 1, r); 
    	return t[x].v = t[t[x].ls].v + t[t[x].rs].v, x; 
    } 
    int query(int o, int l, int r, int pos) { 
    	if (!o) return 0; 
    	if (l == r) return t[o].v; 
    	int mid = (l + r) >> 1; 
    	if (pos <= mid) return query(t[o].ls, l, mid, pos); 
    	else return query(t[o].rs, mid + 1, r, pos); 
    } 
    void Dfs(int x) { 
    	for (int i = fir[x]; ~i; i = e[i].next) { 
    		int v = e[i].to; if (v == fa[x]) continue; 
    		Dfs(v); 
    		rt1[x] = merge(rt1[x], rt1[v], -N, N << 1); 
    		rt2[x] = merge(rt2[x], rt2[v], -N, N << 1); 
    	} 
    	for (int i : Add1[x]) insert(rt1[x], -N, N << 1, i, 1); 
    	for (int i : Add2[x]) insert(rt2[x], -N, N << 1, i, 1);
    	for (int i : Del1[x]) insert(rt1[x], -N, N << 1, i, -1); 
    	for (int i : Del2[x]) insert(rt2[x], -N, N << 1, i, -1); 
    	ans[x] = query(rt1[x], -N, N << 1, w[x] + dep[x]) + query(rt2[x], -N, N << 1, w[x] - dep[x]); 
    } 
    int main () { 
    #ifndef ONLINE_JUDGE 
        freopen("cpp.in", "r", stdin); 
    #endif 
    	clearGraph(); 
    	N = gi(), M = gi(); 
    	for (int i = 1; i < N; i++) { 
    		int u = gi(), v = gi(); 
    		Add_Edge(u, v), Add_Edge(v, u); 
    	} 
    	dfs1(1), dfs2(1, 1); 
    	for (int i = 1; i <= N; i++) w[i] = gi(); 
    	for (int i = 1; i <= M; i++) { 
    		int s = gi(), t = gi(), lca = LCA(s, t); 
    		int d1 = dep[s], d2 = -dep[s]; 
    		if (lca == t) { Add1[s].push_back(d1), Del1[fa[lca]].push_back(d1); continue; } 
    		if (lca == s) { Add2[t].push_back(d2), Del2[fa[lca]].push_back(d2); continue; } 
    		d2 = dep[s] - 2 * dep[lca]; 
    		Add1[s].push_back(d1), Del1[fa[lca]].push_back(d1); 
    		Add2[t].push_back(d2), Del2[lca].push_back(d2); 
    	} 
    	Dfs(1); 
    	for (int i = 1; i <= N; i++) printf("%d ", ans[i]); 
    	putchar('
    '); 
        return 0; 
    } 
    
  • 相关阅读:
    flask简单应用以及配置文件的写法。
    Django REST framework使用及源码分析之节流
    rancher1.6高可用集群搭建
    Rancher安装多节点高可用(HA)
    Rancher 2.2.2
    TeamCity+Rancher+Docker实现.Net Core项目DevOps(目前成本最小的DevOps实践)
    Docker学习笔记_10 docker应用
    一键获取数据库整体信息脚本
    MySQL性能优化最佳实践
    MySQL性能优化最佳实践
  • 原文地址:https://www.cnblogs.com/heyujun/p/11805387.html
Copyright © 2011-2022 走看看