基于pandas的数据清洗:
处理空值操作:
isnull :df.isnull()--检测出原始数据中哪些行中存在空值
notnull:
any:可以帮助我们检测df中哪些行列中存在空值,必须配合isnull使用:isnull->any(axis=1)
all:也可以帮助我们检测元数据中哪些行列中存在空···值,必须配合notnull使用:notnull->all(axis=1)
dropna:删除元数据中存在空值的行数据:df.dropna(axis=0):注意在drop函数中,0表示的是行,1表示的是列,与原生行列相反
fillna:覆盖元数据中存在的空数据,必须配合axis使用。
df.fillna(method='bfill',axis=0) #使用紧邻值填充空值
df.fillna(method='ffill',axis=1) #使用紧邻值填充空值
处理重复操作:drop_duplicates
df.drop_duplicates(keep='first'):保留第一个重复的数据
df.drop_duplicates(keep='last'):保留最后一个重复的数据
df.drop_duplicates(keep=False):全部删除
处理异常数据:
df.drop(labels=xxxx):直接删除异常数据
级联操作:级联是对表格做拼接
匹配级联:
pd.concat((df1,df1,df1),axis=1):三张表按照列进行级联
pd.concat与np.concatenate函数类似,只是多了一些参数:
objs
axis=0
keys
join='outer' / 'inner':表示的是级联的方式,outer会将所有的项进行级联(忽略匹配和不匹配),而inner只会将匹配的项级联到一起,不匹配的不级联
ignore_index=False
pd.append:df1.append(df2)
不匹配级联:不匹配指的是级联的维度的索引不一致。例如纵向级联时列索引不一致,横向级联时行索引不一致
- 有2种连接方式:
- 外连接:补NaN(默认模式)
- 内连接:只连接匹配的项
合并操作:合并是对表格中的数据进行汇总
merge与concat的区别在于,merge需要依据某一共同列来进行合并
使用pd.merge()合并时,会自动根据两者相同column名称的那一列,作为key来进行合并。
注意每一列元素的顺序不要求一致
一对一合并:pd.merge(df1,df2)--合并两个表
一对多合并:pd.merge(df3,df4)--合并表中的相同的字段
多对多合并:pd.merge(df1,df5)--合并表中的全部字段
key的规范化
当列冲突时,即有多个列名称相同时,需要使用on=来指定哪一个列作为key,配合suffixes指定冲突列名
pd.merge(df1,df2,on='group')
当两张表没有可进行连接的列时,可使用left_on和right_on手动指定merge中左右两边的哪一列列作为连接的列:pd.merge(df1,df5,left_on='employee',right_on='name')
内合并和外合并:out取并集,inner取交集
pd.merge(df6,df7,how='right'):右合并,按照右边的表结构进行合并,左边表中的数据没有值的时候填充空的
how:‘outer/inner’
left_on='xxxx',左表的字段
right_on='xxxx'右表的字段
表中的数据
对象.info():查看表的数据
.unique: unique()是用来将Series中的元素进行去重操作
查询:query(条件)
排序:.sort_values(by='列名',ascending=False)
替换操作:
替换操作可以同步作用于Series和DataFrame中
单值替换:df.replace(to_replace=3,value='Three')/df.replace(to_replace={3:'aaa'})
普通替换: 替换所有符合要求的元素:to_replace=15,value='e'
按列指定单值替换: to_replace={列标签:替换值} value='value'
#替换指定列中的值
df.replace(to_replace={5:77},value='6666666')
多值替换
列表替换: to_replace=[] value=[]
字典替换(推荐) to_replace={to_replace:value,to_replace:value}
映射操作:
概念:创建一个映射关系列表,把values元素和一个特定的标签或者字符串绑定(给一个元素值提供不同的表现形式)
dic = {
'jay':'张三',
'tom':'李四'
}
df['c_name'] = df['name'].map(dic) #映射关系
映射索引
使用rename()函数替换行列索引
参数介绍:
index 替换行索引
columns 替换列索引
new_index = {0:'first',1:'two',2:'three',3:'four',4:'five'}
new_col={'color':'cc','value':'vv'}
df4.rename(new_index,columns=new_col)
排序实现的随机抽样
take() :可以更换原数据的行列位置,标注清楚axis就行
np.random.permutation()
np.random.permutation(3) #返回随机序列
分类处理
数据分类处理的核心:
groupby()函数
groups属性查看分组情况
#根据水果的种类进行分组,使用by方法
df.groupby(by='item')
#调用groups查看分组情况
df.groupby(by='item').groups
如果要取其中的某个值或者计算某个数值推荐使用以下方法
df.groupby(by='item')['price'].mean() #推荐
高级数据聚合
使用groupby分组后,也可以使用transform和apply提供自定义函数实现更多的运算
df.groupby('item')'price'.sum() <==> df.groupby('item')'price'.apply(sum)
transform和apply都会进行运算,在transform或者apply中传入函数即可
transform和apply也可以传入一个lambda表达式
def myMean(s):
sum = 0
for i in s:
sum += i
return sum/len(s)
df.groupby(by='item')['price'].apply(myMean) #apply充当聚合的运算工具
/
f.groupby(by='item')['price'].transform(myMean) #transform充当聚合的运算工具
数据加载
读取type.txt文件数据
example:data_1 = pd.read_csv('./data/type-.txt',sep='-',header=None)
读取数据库中的数据:
#连接数据库,获取连接对象
import sqlite3 as sqlite3
conn=sqlite3.connect('./data/weather_2012.sqlite(文件路径)')
#读取数据库中的数据:
sql_df=pd.read_sql('select * from weather_2012',conn)
sql_df
#将数据写入数据库中
data_1.to_sql('sql_data123',conn)
透视表:
透视表是一种可以对数据动态排布并且分类汇总的表格格式,我们在pandas中把它称为pivot_table。
优点:
灵活性高,可以随意定制分析需求
脉络清晰抑郁理解数据
操作性强。
pivot_table有四个最重要的参数index、values、columns、aggfunc
index:分类汇总的分类条件,每个pivot_table必须拥有一个index:df.pivot_table(index='列名')/df.pivot_table(index=['列名1','列2'])
values参数:需要对计算的数据进行筛选:df.pivot_table(index=['列1','列2'],values=['列1','列2','列3'])
Aggfunc参数:设置我们对数据聚合时进行的函数操作,如果我们不设置这个参数,默认是计算数据的均值(aggfunc='means'),也可以设置不同的addfunc参数:#还想获得james harden在主客场和不同胜负情况下的总得分、平均篮板、最大助攻时
df.pivot_table(index=['主客场','胜负'],aggfunc={'得分':'sum','篮板':'mean','助攻':'max'})
Columns:可以设置列层次字段:对values字段进行分类df.pivot_table(index='主客场',values='得分',aggfunc='sum',columns='对手')
交叉表:
是一种用于计算分组的特殊透视图,对数据进行汇总
pd.crosstab(index,colums)。
index:分组数据,交叉表的行索引
columns:交叉表的列索引
例子:求出各个性别抽烟的人数
pd.crosstab(df.smoke,df.sex)
matplotlib绘图
import matplotlib.pyplot as plt
%matplotlib inline #保证绘制的图像可以被正常的显示加载出来