zoukankan      html  css  js  c++  java
  • tensorflow 2.0 学习 (十五)自编码器 FashionMNIST数据集图像重建与生成

    这里就不更新上一文中LSTM情感分类问题了,

    它只是网络结构中函数,从而提高准确率。

    这一篇更新自编码器的图像重建处理,

    网络结构如下:

    代码如下:

      1 import os
      2 import numpy as np
      3 import tensorflow as tf
      4 from tensorflow import keras
      5 from tensorflow.keras import layers, losses, optimizers, Model, Sequential
      6 from PIL import Image
      7 import matplotlib.pyplot as plt
      8 
      9 batchsz = 128  # 批量大小
     10 h_dim = 20  # 中间隐藏层维度
     11 lr = 0.001
     12 
     13 # 加载Fashion MNIST 图片数据集
     14 (x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()
     15 print('x_train shape:', x_train.shape, tf.reduce_max(y_train), tf.reduce_min(y_train))
     16 # x_train shape: (60000, 28, 28) tf.Tensor(9, shape=(), dtype=uint8) tf.Tensor(0, shape=(), dtype=uint8)
     17 print('x_test shape:', x_test.shape)  # x_test shape: (10000, 28, 28)
     18 
     19 # 归一化
     20 x_train, x_test = x_train.astype(np.float32) / 255., x_test.astype(np.float32) / 255.
     21 # 只需要通过图片数据即可构建数据集对象,不需要标签
     22 train_db = tf.data.Dataset.from_tensor_slices(x_train)
     23 train_db = train_db.shuffle(10000).batch(batchsz)
     24 # 构建测试集对象
     25 test_db = tf.data.Dataset.from_tensor_slices(x_test)
     26 test_db = test_db.shuffle(1000).batch(batchsz)
     27 
     28 
     29 class AE(Model):
     30     # 自编码器模型类,包含了Encoder 和Decoder2 个子网络
     31     def __init__(self):
     32         super(AE, self).__init__()
     33         # 创建Encoders 网络
     34         self.encoder = Sequential([
     35             layers.Dense(256, activation=tf.nn.relu),
     36             layers.Dense(128, activation=tf.nn.relu),
     37             layers.Dense(h_dim)])
     38         # 创建Decoders 网络
     39         self.decoder = Sequential([
     40             layers.Dense(128, activation=tf.nn.relu),
     41             layers.Dense(256, activation=tf.nn.relu),
     42             layers.Dense(784)])
     43 
     44     def call(self, inputs, training=None):
     45         #  前向传播函数
     46         #  编码获得隐藏向量h,[b, 784] => [b, 20]
     47         h = self.encoder(inputs)
     48         # 解码获得重建图片,[b, 20] => [b, 784]
     49         x_hat = self.decoder(h)
     50         return x_hat
     51 
     52 
     53 def save_images(imgs, name):
     54     # 创建280x280 大小图片阵列
     55     new_im = Image.new('L', (280, 280))
     56     index = 0
     57     for i in range(0, 280, 28):  # 10 行图片阵列
     58         for j in range(0, 280, 28):  # 10 列图片阵列
     59             im = imgs[index]
     60             im = Image.fromarray(im, mode='L')
     61             new_im.paste(im, (i, j))  # 写入对应位置
     62             index += 1
     63     # 保存图片阵列
     64     new_im.save(name)
     65 
     66 
     67 def draw():
     68     plt.figure()
     69     plt.plot(train_tot_loss, 'b', label='train')
     70     plt.plot(test_tot_loss, 'r', label='test')
     71     plt.xlabel('Epoch')
     72     plt.ylabel('ACC')
     73     plt.legend()
     74     plt.savefig('exam10.1_train_test_AE.png')
     75     plt.show()
     76 
     77 
     78 # 创建网络对象
     79 model = AE()
     80 # 指定输入大小
     81 model.build(input_shape=(None, 784))
     82 # 打印网络信息
     83 model.summary()
     84 # 创建优化器,并设置学习率
     85 optimizer = optimizers.Adam(lr=lr)
     86 # 保存训练和测试过程中的误差情况
     87 train_tot_loss = []
     88 test_tot_loss = []
     89 
     90 
     91 def main():
     92     for epoch in range(100):  # 训练100 个Epoch
     93         
     94         cor, tot = 0, 0
     95         for step, x in enumerate(train_db):  # 遍历训练集
     96             # 打平,[b, 28, 28] => [b, 784]
     97             x = tf.reshape(x, [-1, 784])
     98             # 构建梯度记录器
     99             with tf.GradientTape() as tape:
    100                 # 前向计算获得重建的图片
    101                 x_rec_logits = model(x)
    102                 # 计算重建图片与输入之间的损失函数
    103                 rec_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=x, logits=x_rec_logits)
    104                 # 计算均值
    105                 rec_loss = tf.reduce_mean(rec_loss)
    106                 cor += rec_loss
    107                 tot += x.shape[0]
    108                 # 自动求导,包含了2 个子网络的梯度
    109                 grads = tape.gradient(rec_loss, model.trainable_variables)
    110                 # 自动更新,同时更新2 个子网络
    111                 optimizer.apply_gradients(zip(grads, model.trainable_variables))
    112             if step % 100 == 0:
    113                 # 间隔性打印训练误差
    114                 print(epoch, step, float(rec_loss))
    115         train_tot_loss.append(cor / tot)
    116 
    117         correct, total = 0, 0
    118         for x in test_db:
    119             x = tf.reshape(x, [-1, 784])
    120             out = model(x)
    121             out_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=x, logits=out)
    122             # 计算均值
    123             loss = tf.reduce_mean(out_loss)
    124             correct += loss
    125             total += x.shape[0]
    126         test_tot_loss.append(correct / total)
    127 
    128         if (epoch == 0) or (epoch == 9) or (epoch == 99):
    129             #  重建图像
    130             # 重建图片,从测试集采样一批图片
    131             x = next(iter(test_db))
    132             out_logits = model(tf.reshape(x, [-1, 784]))  # 打平并送入自编码器
    133             x_hat = tf.sigmoid(out_logits)  # 将输出转换为像素值,使用sigmoid 函数
    134             # 恢复为28x28,[b, 784] => [b, 28, 28]
    135             x_hat = tf.reshape(x_hat, [-1, 28, 28])
    136             # 输入的前50 张+重建的前50 张图片合并,[b, 28, 28] => [2b, 28, 28]
    137             x_concat = tf.concat([x[:50], x_hat[:50]], axis=0)
    138             x_concat = x_concat.numpy() * 255.  # 恢复为0~255 范围
    139             x_concat = x_concat.astype(np.uint8)  # 转换为整型
    140             save_images(x_concat, 'exam10.1_rec_epoch_%d.png' % (epoch+1))  # 保存图片
    141 
    142 
    143 if __name__ == '__main__':
    144     main()
    145     draw()

    重建效果(Epoch=1, 10, 100):

    训练和测试的准确率:

    变分自编码器:

    网络结构如下:

     代码如下:

      1 import os
      2 import numpy as np
      3 import tensorflow as tf
      4 from tensorflow import keras
      5 from tensorflow.keras import layers, losses, optimizers, Model, Sequential
      6 from PIL import Image
      7 import matplotlib.pyplot as plt
      8 
      9 batchsz = 128  # 批量大小
     10 # h_dim = 20  # 中间隐藏层维度
     11 lr = 0.001
     12 z_dim = 20
     13 
     14 # 加载Fashion MNIST 图片数据集
     15 (x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()
     16 print('x_train shape:', x_train.shape, tf.reduce_max(y_train), tf.reduce_min(y_train))
     17 # x_train shape: (60000, 28, 28) tf.Tensor(9, shape=(), dtype=uint8) tf.Tensor(0, shape=(), dtype=uint8)
     18 print('x_test shape:', x_test.shape)  # x_test shape: (10000, 28, 28)
     19 
     20 # 归一化
     21 x_train, x_test = x_train.astype(np.float32) / 255., x_test.astype(np.float32) / 255.
     22 # 只需要通过图片数据即可构建数据集对象,不需要标签
     23 train_db = tf.data.Dataset.from_tensor_slices(x_train)
     24 train_db = train_db.shuffle(10000).batch(batchsz)
     25 # 构建测试集对象
     26 test_db = tf.data.Dataset.from_tensor_slices(x_test)
     27 test_db = test_db.shuffle(1000).batch(batchsz)
     28 
     29 
     30 class VAE(keras.Model):
     31     # 变分自编码器
     32     def __init__(self):
     33         super(VAE, self).__init__()
     34         # Encoder 网络
     35         self.fc1 = layers.Dense(128)
     36         self.fc2 = layers.Dense(z_dim)  # 均值输出
     37         self.fc3 = layers.Dense(z_dim)  # 方差输出
     38         # Decoder 网络
     39         self.fc4 = layers.Dense(128)
     40         self.fc5 = layers.Dense(784)
     41 
     42     def encoder(self, x):
     43         # 获得编码器的均值和方差
     44         h = tf.nn.relu(self.fc1(x))
     45         # 均值向量
     46         mu = self.fc2(h)
     47         # 方差的log 向量
     48         log_var = self.fc3(h)
     49         return mu, log_var
     50 
     51     def decoder(self, z):
     52         # 根据隐藏变量z 生成图片数据
     53         out = tf.nn.relu(self.fc4(z))
     54         out = self.fc5(out)
     55         # 返回数据图片 786向量
     56         return out
     57 
     58     def call(self, inputs, training=None):
     59         # 前向计算
     60         # 编码器[b, 784] => [b, z_dim], [b, z_dim]
     61         mu, log_var = self.encoder(inputs)
     62         # 采样reparameterization trick
     63         z = self.reparameterize(mu, log_var)
     64         # 通过解码器生成
     65         x_hat = self.decoder(z)
     66         # 返回生成样本,及其均值与方差
     67         return x_hat, mu, log_var
     68 
     69     def reparameterize(self, mu, log_var):
     70         # reparameterize 技巧,从正态分布采样epsion
     71         eps = tf.random.normal(log_var.shape)
     72         # 计算标准差
     73         std = tf.exp(log_var) ** 0.5
     74         # reparameterize 技巧
     75         z = mu + std * eps
     76         return z
     77 
     78 
     79 def save_images(imgs, name):
     80     # 创建280x280 大小图片阵列
     81     new_im = Image.new('L', (280, 280))
     82     index = 0
     83     for i in range(0, 280, 28):  # 10 行图片阵列
     84         for j in range(0, 280, 28):  # 10 列图片阵列
     85             im = imgs[index]
     86             im = Image.fromarray(im, mode='L')
     87             new_im.paste(im, (i, j))  # 写入对应位置
     88             index += 1
     89     # 保存图片阵列
     90     new_im.save(name)
     91 
     92 
     93 def draw():
     94     plt.figure()
     95     plt.plot(train_tot_loss, 'b', label='train')
     96     plt.plot(test_tot_loss, 'r', label='test')
     97     plt.xlabel('Epoch')
     98     plt.ylabel('ACC')
     99     plt.legend()
    100     plt.savefig('exam10.2_train_test_VAE.png')
    101     plt.show()
    102 
    103 
    104 # 创建网络对象
    105 model = VAE()
    106 # 指定输入大小
    107 model.build(input_shape=(4, 784))
    108 # 打印网络信息
    109 model.summary()
    110 # 创建优化器,并设置学习率
    111 optimizer = optimizers.Adam(lr=lr)
    112 # 保存训练和测试过程中的误差情况
    113 train_tot_loss = []
    114 test_tot_loss = []
    115 
    116 
    117 def main():
    118     for epoch in range(100):  # 训练100 个Epoch
    119 
    120         cor, tot = 0, 0
    121         for step, x in enumerate(train_db):  # 遍历训练集
    122             # 打平,[b, 28, 28] => [b, 784]
    123             x = tf.reshape(x, [-1, 784])
    124             # 构建梯度记录器
    125             with tf.GradientTape() as tape:
    126                 # 前向计算
    127                 x_rec_logits, mu, log_var = model(x)
    128                 # 重建损失值计算
    129                 rec_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=x, logits = x_rec_logits)
    130                 rec_loss = tf.reduce_sum(rec_loss) / x.shape[0]
    131                 # 计算KL 散度 N(mu, var) VS N(0, 1)
    132                 # 公式参考:https://stats.stackexchange.com/questions/7440/kldivergence-between - two - univariate - gaussians
    133                 kl_div = -0.5 * (log_var + 1 - mu ** 2 - tf.exp(log_var))
    134                 kl_div = tf.reduce_sum(kl_div) / x.shape[0]
    135                 # 合并误差项
    136                 loss = rec_loss + 1. * kl_div
    137 
    138                 cor += loss
    139                 tot += x.shape[0]
    140                 # 自动求导
    141                 grads = tape.gradient(loss, model.trainable_variables)
    142                 # 自动更新
    143                 optimizer.apply_gradients(zip(grads, model.trainable_variables))
    144             if step % 100 == 0:
    145                 # 间隔性打印训练误差
    146                 print(epoch, step, 'kl div:', float(kl_div), 'rec loss:', float(rec_loss))
    147         train_tot_loss.append(cor / tot)
    148 
    149         correct, total = 0, 0
    150         for x in test_db:
    151             x = tf.reshape(x, [-1, 784])
    152             # 前向计算
    153             x_rec_logits, mu, log_var = model(x)
    154             # 重建损失值计算
    155             rec_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=x, logits=x_rec_logits)
    156             rec_loss = tf.reduce_sum(rec_loss) / x.shape[0]
    157             # 计算KL 散度 N(mu, var) VS N(0, 1)
    158             kl_div = -0.5 * (log_var + 1 - mu ** 2 - tf.exp(log_var))
    159             kl_div = tf.reduce_sum(kl_div) / x.shape[0]
    160             # 合并误差项
    161             loss = rec_loss + 1. * kl_div
    162 
    163             correct += loss
    164             total += x.shape[0]
    165         test_tot_loss.append(correct / total)
    166 
    167         if (epoch == 0) or (epoch == 9) or (epoch == 99):
    168             # 测试生成效果,从正态分布随机采样z
    169             z = tf.random.normal((batchsz, z_dim))
    170             logits = model.decoder(z)  # 仅通过解码器生成图片
    171             x_hat = tf.sigmoid(logits)  # 转换为像素范围
    172             x_hat = tf.reshape(x_hat, [-1, 28, 28]).numpy() * 255.
    173             x_hat = x_hat.astype(np.uint8)
    174             save_images(x_hat, 'exam10.2_epoch_%d_sampled.png' % (epoch+1))  # 保存生成图片
    175 
    176             # 重建图片,从测试集采样图片
    177             x = next(iter(test_db))
    178             logits, _, _ = model(tf.reshape(x, [-1, 784]))  # 打平并送入自编码器
    179             x_hat = tf.sigmoid(logits)  # 将输出转换为像素值
    180             # 恢复为28x28,[b, 784] => [b, 28, 28]
    181             x_hat = tf.reshape(x_hat, [-1, 28, 28])
    182             # 输入的前50 张+重建的前50 张图片合并,[b, 28, 28] => [2b, 28, 28]
    183             x_concat = tf.concat([x[:50], x_hat[:50]], axis=0)
    184             x_concat = x_concat.numpy() * 255.  # 恢复为0~255 范围
    185             x_concat = x_concat.astype(np.uint8)
    186             save_images(x_concat, 'exam10.2_epoch_%d_rec.png' % (epoch+1))  # 保存重建图片
    187 
    188 
    189 if __name__ == '__main__':
    190     main()
    191     draw()

    图像重建(Epoch=1, 10, 100):

           

    图像生成(Epoch=1, 10, 100):

           

    误差情况:

  • 相关阅读:
    webpack的基本使用2
    js调用本地exe程序,并获取exe运行结果
    BLE技术简介(转)
    在线编解码转换工具
    json字符转数组
    PPT图标
    在线IP地址与数字互转工具
    C# Combobox
    C# 设置本机日期格式
    sql server删除字段约束
  • 原文地址:https://www.cnblogs.com/heze/p/12380731.html
Copyright © 2011-2022 走看看