一、题目
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
二、思路
a.如果两种跳法,1阶或者2阶,那么假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法是f(n-1);
b.假定第一次跳的是2阶,那么剩下的是n-2个台阶,跳法是f(n-2)
c.由a假设可以得出总跳法为: f(n) = f(n-1) + f(n-2)
d.然后通过实际的情况可以得出:只有一阶的时候 f(1) = 1 ,只有两阶的时候可以有 f(2) = 2
e.可以发现最终得出的是一个斐波那契数列:
| 1, (n=1)
f(n) = | 2, (n=2)
| f(n-1)+f(n-2) ,(n>2,n为整数)
三、代码
public class Solution { public int JumpFloor(int target) { if (target <= 0) { return -1; } else if (target == 1) { return 1; } else if (target ==2) { return 2; } else { return JumpFloor(target-1)+JumpFloor(target-2); } } }
-----------------------------------------------------------------------------------------------------
参考链接:https://www.nowcoder.com/profile/214250/codeBookDetail?submissionId=1520111