HDU 1061 Rightmost Digit 分类: ACM 算法 2011-12-17 17:37 749人阅读 评论(2) 收藏 举报 integeroutputinputeach算法c Problem Description Given a positive integer N, you should output the most right digit of N^N. Input The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow. Each test case contains a single positive integer N(1<=N<=1,000,000,000). Output For each test case, you should output the rightmost digit of N^N. Sample Input 2 3 4 Sample Output 7 6 Hint In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7. In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6. 题意: 求n^n模10 代码: [cpp] view plaincopy #include<stdio.h> int exp_mod(int a,unsigned int n,int b) { int t; if(n==0||n==1) return n==0?1:a; t=exp_mod(a,n/2,b); t=t*t; if(n%2==1)t=t*a; return t%b; } int main() { int t; scanf("%d",&t); while(t--) { long long n; scanf("%lld",&n); printf("%d ",exp_mod(n%10,n,10)); } return 0; } 分析: 代码是在网上找的模版,第一次做是想找规律的可是实在是太繁琐勒(其实是我懒= =! ),就上网看看有没有更简单的方法,才知道这样的题有模版,就是快速幂取模.果断背下来.... 下面是我经过在网上找的解析: 快速幂取模就是在O(logn)内求出a^n mod b的值。算法的原理是ab mod c=(a mod c)(b mod c)mod c