Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) $ in$AxBxCxD are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .
Output
For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
1
6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45
Sample Output
5
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
题解:不超时最好。。先枚举a,b,然后检查-(c+d)的值,还是二分优化。
AC代码:
#include <algorithm> #include <iostream> using namespace std; const int Max = 4000 + 10; int a[Max],b[Max],c[Max],d[Max]; int ab[17000000]; int total; int main() { int t; cin>>t; while(t--) { int n; cin>>n; for(int i=0; i<n; i++) { cin>>a[i]>>b[i]>>c[i]>>d[i]; } int k=0; for(int i=0;i<n; i++) { for(int j=0;j<n; j++) { ab[k]=a[i]+b[j]; k++; } } sort(ab,ab+k); total=0; int s,l,r,mid; for(int i=0; i<n; i++) { for(int j=0; j<n; j++) { int x=-c[i]-d[j]; l=0,r=k-1; while(l<=r) { mid=(l+r)/2; if(ab[mid]>x) r=mid-1; else if(ab[mid]<x) l=mid+1; else { for(s=mid;s>=0;s--) { if(ab[s]==x) total++; else break; } for(s=mid+1; s<k; s++) { if(ab[s]==x) total++; else break; } break; } } } } cout<<total<<endl; if(t>0) cout<<endl; } return 0; }