A - A
Time Limit:1000MS Memory Limit:131072KB 64bit IO Format:%I64d & %I64u
Description
bobo has a sequence a 1,a 2,…,a n. He is allowed to swap two adjacent numbers for no more than k times.
Find the minimum number of inversions after his swaps.
Note: The number of inversions is the number of pair (i,j) where 1≤i<j≤n and a i>a j.
Find the minimum number of inversions after his swaps.
Note: The number of inversions is the number of pair (i,j) where 1≤i<j≤n and a i>a j.
Input
The input consists of several tests. For each tests:
The first line contains 2 integers n,k (1≤n≤10 5,0≤k≤10 9). The second line contains n integers a 1,a 2,…,a n (0≤a i≤10 9).
The first line contains 2 integers n,k (1≤n≤10 5,0≤k≤10 9). The second line contains n integers a 1,a 2,…,a n (0≤a i≤10 9).
Output
For each tests:
A single integer denotes the minimum number of inversions.
A single integer denotes the minimum number of inversions.
Sample Input
3 1
2 2 1
3 0
2 2 1
Sample Output
1
2
题解:同归并排序,只需要逆序数减去交换次数。但是要注意交换次数的大小是否大于原本逆序数。
#include<iostream> #include<cstdio> using namespace std; int n,t[100005],a[100005]; long long k,total; void merge_sort(int *a,int x,int y,int *t) { if(y-x>1) { int m=x+(y-x)/2; int p=x,q=m,i=x; merge_sort(a,x,m,t); merge_sort(a,m,y,t); while(p<m||q<y) { if(q>=y||(p<m&&a[p]<=a[q])) t[i++]=a[p++]; else { t[i++]=a[q++]; total+=m-p; } } for(i=x;i<y;i++) a[i]=t[i]; } } int main() { while(cin>>n>>k) { for(int i=0;i<n;i++) { cin>>a[i]; } total=0; merge_sort(a,0,n,t); if(total<=k) cout<<'0'<<endl; else printf("%lld ",total-k); } return 0; }