zoukankan      html  css  js  c++  java
  • [CF149D] Coloring Brackets(区间dp)

    原题

    Once Petya read a problem about a bracket sequence. He gave it much thought but didn't find a solution. Today you will face it.

    You are given string s. It represents a correct bracket sequence. A correct bracket sequence is the sequence of opening ("(") and closing (")") brackets, such that it is possible to obtain a correct mathematical expression from it, inserting numbers and operators between the brackets. For example, such sequences as "(())()" and "()" are correct bracket sequences and such sequences as ")()" and "(()" are not.

    In a correct bracket sequence each bracket corresponds to the matching bracket (an opening bracket corresponds to the matching closing bracket and vice versa). For example, in a bracket sequence shown of the figure below, the third bracket corresponds to the matching sixth one and the fifth bracket corresponds to the fourth one.

    img

    You are allowed to color some brackets in the bracket sequence so as all three conditions are fulfilled:

    • Each bracket is either not colored any color, or is colored red, or is colored blue.
    • For any pair of matching brackets exactly one of them is colored. In other words, for any bracket the following is true: either it or the matching bracket that corresponds to it is colored.
    • No two neighboring colored brackets have the same color.

    Find the number of different ways to color the bracket sequence. The ways should meet the above-given conditions. Two ways of coloring are considered different if they differ in the color of at least one bracket. As the result can be quite large, print it modulo 1000000007 (10^9 + 7).

    Input

    The first line contains the single string s (2 ≤ |s| ≤ 700) which represents a correct bracket sequence.

    Output

    Print the only number — the number of ways to color the bracket sequence that meet the above given conditions modulo 1000000007 (10^9 + 7).

    Examples

    input

    (())
    

    output

    12
    

    input

    (()())
    

    output

    40
    

    input

    ()
    

    output

    4
    

    Note

    Let's consider the first sample test. The bracket sequence from the sample can be colored, for example, as is shown on two figures below.

    imgimg

    The two ways of coloring shown below are incorrect.

    imgimg

    思路

    dp[l][r][l的颜色][r的颜色],存下每个括号的匹配括号,如果当前l,r互相匹配, 从dp[l + 1][r - 1]转移,否则根据乘法原理求出方案数。

    #include <algorithm>
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <list>
    #include <map>
    #include <iostream>
    #include <iomanip>
    #include <queue>
    #include <set>
    #include <stack>
    #include <string>
    #include <unordered_map>
    #include <vector>
    #define LL long long
    #define inf 0x3f3f3f3f
    #define INF 0x3f3f3f3f3f3f
    #define PI 3.1415926535898
    #define F first
    #define S second
    #define endl '
    '
    #define lson  rt << 1
    #define rson  rt << 1 | 1
    #define lowbit(x) (x &(-x))
    #define f(x, y, z) for (int x = (y), __ = (z); x < __; ++x)
    #define _rep(i, a, b) for (int i = (a); i <= (b); ++i)
    #define _per(i, a, b) for (int i = (a); i >= (b); --i)
    using namespace std;
    
    const int maxn = 707;
    const int mod = 1e9 + 7;
    int n;
    string s;
    int match[maxn];
    LL dp[maxn][maxn][3][3];
    
    int dfs(int l, int r) {
    	if (l + 1 == r) {
    		dp[l][r][0][1] = dp[l][r][0][2] = dp[l][r][1][0] = dp[l][r][2][0] = 1;
    		return 0;
    	}
    	if (match[l] == r) {
    		dfs(l + 1, r - 1);
    		_rep(i, 0, 2) {
    			_rep(j, 0, 2) {
    				if (i != 1) dp[l][r][1][0] = (dp[l][r][1][0] + dp[l + 1][r - 1][i][j]) % mod;
    				if (i != 2) dp[l][r][2][0] = (dp[l][r][2][0] + dp[l + 1][r - 1][i][j]) % mod;
    				if (j != 1) dp[l][r][0][1] = (dp[l][r][0][1] + dp[l + 1][r - 1][i][j]) % mod;
    				if (j != 2) dp[l][r][0][2] = (dp[l][r][0][2] + dp[l + 1][r - 1][i][j]) % mod;
    			}
    		}
    	}
    	else {
    		dfs(l, match[l]), dfs(match[l] + 1, r);
    		_rep(i, 0, 2) {
    			_rep(j, 0, 2) {
    				_rep(p, 0, 2) {
    					_rep(q, 0, 2) {
    						if ((j == 1 && p == 1) || (j == 2 && p == 2)) continue;
    						dp[l][r][i][q] = (dp[l][r][i][q] + dp[l][match[l]][i][j] * dp[match[l] + 1][r][p][q]) % mod;
    					}
    				}
    			}
    		}
    	}
    	return 0;
    }
    
    int main()
    {
    	ios::sync_with_stdio(false);
    	cin.tie(0);
    	cin >> s;
    	stack<int> q;
    	f(i, 0, s.size()) {
    		if (s[i] == '(') q.push(i);
    		else {
    			match[i] = q.top();
    			match[q.top()] = i;
    			q.pop();
    		}
    	}
    	dfs(0, s.size() - 1);
    	LL ans = 0;
    	_rep(i, 0, 2) {
    		_rep(j, 0, 2) ans = (ans + dp[0][s.size() - 1][i][j]) % mod;
    	}
    	cout << ans << endl;
        return 0;
    }
    
  • 相关阅读:
    写时复制集合 —— CopyOnWriteArrayList 源码原理阅读笔记
    初步整合vue-element-admin和GitDataV两个Vue开源框架方案实现大数据可视化
    IOS苹果登录sign in with apple后端校验
    IOS审核被拒:IOS苹果授权登录(Sign in with Apple)/Apple登录/苹果登录集成教程
    ios安装自定义基座失败问题
    IOS APP上架App Store及提交审核详细教程
    IOS APP报错:SyntaxError: Invalid regular expression: invalid group specifier name __ERROR
    Apple Pay苹果支付IOS in-App Purchase内购项目服务端校验
    浅析浏览器是如何工作的(一):V8引擎、JIT机制、JS代码解释执行与编译执行
    ApplePay苹果支付内购项目配置及代码实现及沙箱测试
  • 原文地址:https://www.cnblogs.com/hfcdyp/p/13912664.html
Copyright © 2011-2022 走看看