zoukankan      html  css  js  c++  java
  • [CF149D] Coloring Brackets(区间dp)

    原题

    Once Petya read a problem about a bracket sequence. He gave it much thought but didn't find a solution. Today you will face it.

    You are given string s. It represents a correct bracket sequence. A correct bracket sequence is the sequence of opening ("(") and closing (")") brackets, such that it is possible to obtain a correct mathematical expression from it, inserting numbers and operators between the brackets. For example, such sequences as "(())()" and "()" are correct bracket sequences and such sequences as ")()" and "(()" are not.

    In a correct bracket sequence each bracket corresponds to the matching bracket (an opening bracket corresponds to the matching closing bracket and vice versa). For example, in a bracket sequence shown of the figure below, the third bracket corresponds to the matching sixth one and the fifth bracket corresponds to the fourth one.

    img

    You are allowed to color some brackets in the bracket sequence so as all three conditions are fulfilled:

    • Each bracket is either not colored any color, or is colored red, or is colored blue.
    • For any pair of matching brackets exactly one of them is colored. In other words, for any bracket the following is true: either it or the matching bracket that corresponds to it is colored.
    • No two neighboring colored brackets have the same color.

    Find the number of different ways to color the bracket sequence. The ways should meet the above-given conditions. Two ways of coloring are considered different if they differ in the color of at least one bracket. As the result can be quite large, print it modulo 1000000007 (10^9 + 7).

    Input

    The first line contains the single string s (2 ≤ |s| ≤ 700) which represents a correct bracket sequence.

    Output

    Print the only number — the number of ways to color the bracket sequence that meet the above given conditions modulo 1000000007 (10^9 + 7).

    Examples

    input

    (())
    

    output

    12
    

    input

    (()())
    

    output

    40
    

    input

    ()
    

    output

    4
    

    Note

    Let's consider the first sample test. The bracket sequence from the sample can be colored, for example, as is shown on two figures below.

    imgimg

    The two ways of coloring shown below are incorrect.

    imgimg

    思路

    dp[l][r][l的颜色][r的颜色],存下每个括号的匹配括号,如果当前l,r互相匹配, 从dp[l + 1][r - 1]转移,否则根据乘法原理求出方案数。

    #include <algorithm>
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <list>
    #include <map>
    #include <iostream>
    #include <iomanip>
    #include <queue>
    #include <set>
    #include <stack>
    #include <string>
    #include <unordered_map>
    #include <vector>
    #define LL long long
    #define inf 0x3f3f3f3f
    #define INF 0x3f3f3f3f3f3f
    #define PI 3.1415926535898
    #define F first
    #define S second
    #define endl '
    '
    #define lson  rt << 1
    #define rson  rt << 1 | 1
    #define lowbit(x) (x &(-x))
    #define f(x, y, z) for (int x = (y), __ = (z); x < __; ++x)
    #define _rep(i, a, b) for (int i = (a); i <= (b); ++i)
    #define _per(i, a, b) for (int i = (a); i >= (b); --i)
    using namespace std;
    
    const int maxn = 707;
    const int mod = 1e9 + 7;
    int n;
    string s;
    int match[maxn];
    LL dp[maxn][maxn][3][3];
    
    int dfs(int l, int r) {
    	if (l + 1 == r) {
    		dp[l][r][0][1] = dp[l][r][0][2] = dp[l][r][1][0] = dp[l][r][2][0] = 1;
    		return 0;
    	}
    	if (match[l] == r) {
    		dfs(l + 1, r - 1);
    		_rep(i, 0, 2) {
    			_rep(j, 0, 2) {
    				if (i != 1) dp[l][r][1][0] = (dp[l][r][1][0] + dp[l + 1][r - 1][i][j]) % mod;
    				if (i != 2) dp[l][r][2][0] = (dp[l][r][2][0] + dp[l + 1][r - 1][i][j]) % mod;
    				if (j != 1) dp[l][r][0][1] = (dp[l][r][0][1] + dp[l + 1][r - 1][i][j]) % mod;
    				if (j != 2) dp[l][r][0][2] = (dp[l][r][0][2] + dp[l + 1][r - 1][i][j]) % mod;
    			}
    		}
    	}
    	else {
    		dfs(l, match[l]), dfs(match[l] + 1, r);
    		_rep(i, 0, 2) {
    			_rep(j, 0, 2) {
    				_rep(p, 0, 2) {
    					_rep(q, 0, 2) {
    						if ((j == 1 && p == 1) || (j == 2 && p == 2)) continue;
    						dp[l][r][i][q] = (dp[l][r][i][q] + dp[l][match[l]][i][j] * dp[match[l] + 1][r][p][q]) % mod;
    					}
    				}
    			}
    		}
    	}
    	return 0;
    }
    
    int main()
    {
    	ios::sync_with_stdio(false);
    	cin.tie(0);
    	cin >> s;
    	stack<int> q;
    	f(i, 0, s.size()) {
    		if (s[i] == '(') q.push(i);
    		else {
    			match[i] = q.top();
    			match[q.top()] = i;
    			q.pop();
    		}
    	}
    	dfs(0, s.size() - 1);
    	LL ans = 0;
    	_rep(i, 0, 2) {
    		_rep(j, 0, 2) ans = (ans + dp[0][s.size() - 1][i][j]) % mod;
    	}
    	cout << ans << endl;
        return 0;
    }
    
  • 相关阅读:
    一提黄金肯定就是西方的货币史
    封装QtCore(在非Qt项目里使用QString,QJson,QFileInfo,QFile等类)
    Qt 自定义事件(三种方法:继承QEvent,然后Send Post就都可以了,也可以覆盖customEvent函数,也可覆盖event()函数)
    MAC 设置环境变量path的几种方法
    深入Qt 学习 -- 反射机制(比较简单清楚)
    排序
    寄存器,cache、伙伴系统、内存碎片、段式页式存储管理
    NET Core项目
    消息队列
    RedisHelper
  • 原文地址:https://www.cnblogs.com/hfcdyp/p/13912664.html
Copyright © 2011-2022 走看看