1.堆排序
- 堆是一个完全二叉树。
- 完全二叉树: 二叉树除开最后一层,其他层结点数都达到最大,最后一层的所有结点都集中在左边(左边结点排列满的情况下,右边才能缺失结点)。
- 大顶堆:根结点为最大值,每个结点的值大于或等于其孩子结点的值。
- 小顶堆:根结点为最小值,每个结点的值小于或等于其孩子结点的值。
对二叉树做升序排序,总共分为三步:
1.将初始二叉树转化为大顶堆(heapify)(实质是从第一个非叶子结点开始,从下至上,从右至左,对每一个非叶子结点做shiftDown操作),此时根结点为最大值,将其与最后一个结点交换。
2.除开最后一个结点,将其余节点组成的新堆转化为大顶堆(实质上是对根节点做shiftDown操作),此时根结点为次最大值,将其与最后一个结点交换。
3.重复步骤2,直到堆中元素个数为1(或其对应数组的长度为1),排序完成。
var len;
function buildMaxHeap(arr) { //建堆
len = arr.length;
// [n/2-1]表示的是最后一个有子节点 (本来是n/2(堆从1数起),但是这里arr索引是从0开始,所以-1)
for (var i = Math.floor(len/2)-1; i>=0; i--) {
maxHeapify(arr, i);
}
//对每一个节点(非叶节点),做堆调整
}
function maxHeapify(arr, i) { //堆调整
var left = 2*i+1,
right = 2*i+2,
largest = i; //i为该子树的根节点
if (left < len && arr[left] > arr[largest]) {
largest = left;
}
if (right < len && arr[right] > arr[largest]) {
largest = right;
}
if (largest != i) { //即上面的if中有一个生效了
swap(arr, i, largest); //交换最大的为父节点
maxHeapify(arr, largest); //交换后,原值arr[i](往下降了)(索引保存为largest),
//作为根时,子节点可能比它大,因此要继续调整
}
}
function swap(arr, i, j) {
var temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
function heapSort(arr) {
buildMaxHeap(arr);
for (var i = arr.length-1; i > 0; i--) {
swap(arr, 0, i);
len--;
maxHeapify(arr, 0);
}
return arr;
}