Problem Description
soda has a set S with n integers {1,2,…,n}. A set is called key set if the sum of integers in the set
is an even number. He wants to know how many nonempty subsets of S are key set.
Input
There are multiple test cases. The first line of input contains an integer T (1≤T≤105), indicating
the number of test cases. For each test case:
The first line contains an integer n (1≤n≤109), the number of integers in the set.
Output
For each test case, output the number of key sets modulo 1000000007.
Sample Input
4
1
2
3
4
Sample Output
0
1
3
7
题意:给你一个元素为1到n的集合S,问集合S的非空子集中元素和为偶数的非空子集有多少个。
题解:我们知道偶数+偶数=偶数,奇数+奇数=偶数,假设现在有a个偶数,b个奇数。则
根据二项式展开公式可得2n-1。最后的结果还需减去
即空集的情况,因为题目要求非空子集,所以最终结果为2n-1-1。
1 #include <cstdio> 2 #include <cstring> 3 #include <iostream> 4 #include <algorithm> 5 using namespace std; 6 const int mod = 1e9 + 7; 7 long long power(long long n, long long m, long long mod) 8 { 9 long long sum = 1; 10 n %= mod; 11 while (m){ 12 if (m % 2) 13 sum = sum * n % mod; 14 n = n * n % mod; 15 m /= 2; 16 } 17 return sum; 18 } 19 int main() 20 { 21 int t; 22 scanf("%d",&t); 23 while (t--){ 24 long long n; 25 scanf("%I64d", &n); 26 long long sum = power(2, n-1, mod) - 1; 27 printf("%I64d ",sum); 28 } 29 return 0; 30 }