zoukankan      html  css  js  c++  java
  • (收藏)STL MAP 详解

    Map是STL的一个关联容器,它提供一对一(其中第一个可以称为关键字,每个关键字只能在map中出现一次,第二个可能称为该关键字的值)的数据处理能力,由于这个特性,它完成有可能在我们处理一对一数据的时候,在编程上提供快速通道。这里说下map内部数据的组织,map内部自建一颗红黑树(一种非严格意义上的平衡二叉树),这颗树具有对数据自动排序的功能,所以在map内部所有的数据都是有序的,后边我们会见识到有序的好处。
    下面举例说明什么是一对一的数据映射。比如一个班级中,每个学生的学号跟他的姓名就存在着一一映射的关系,这个模型用map可能轻易描述,很明显学号用 int描述,姓名用字符串描述(本篇文章中不用char *来描述字符串,而是采用STL中string来描述),下面给出map描述代码:

    Map<int, string> mapStudent;

    1.map的构造函数

    map共提供了6个构造函数,这块涉及到内存分配器这些东西,略过不表,在下面我们将接触到一些map的构造方法,这里要说下的就是,我们通常用如下方法构造一个map:

    Map<int, string> mapStudent;

    2.数据的插入

    在构造map容器后,我们就可以往里面插入数据了。这里讲三种插入数据的方法:

    第一种:用insert函数插入pair数据,下面举例说明(以下代码虽然是随手写的,应该可以在VC和GCC下编译通过,大家可以运行下看什么效果,在VC下请加入这条语句,屏蔽4786警告 #pragma warning (disable:4786) )

    #include <map>

    #include <string>

    #include <iostream>

    Using namespace std;

    Int main()

    {

    Map<int, string> mapStudent;

    mapStudent.insert(pair<int, string>(1, “student_one”));

    mapStudent.insert(pair<int, string>(2, “student_two”));

    mapStudent.insert(pair<int, string>(3, “student_three”));

    map<int, string>::iterator iter;

    for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++)

    {

    Cout<<iter->first<<” ”<<iter->second<<end;

    }

    }

    第二种:用insert函数插入value_type数据,下面举例说明

    #include <map>

    #include <string>

    #include <iostream>

    Using namespace std;

    Int main()

    {

    Map<int, string> mapStudent;

    mapStudent.insert(map<int, string>::value_type (1, “student_one”));

    mapStudent.insert(map<int, string>::value_type (2, “student_two”));

    mapStudent.insert(map<int, string>::value_type (3, “student_three”));

    map<int, string>::iterator iter;

    for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++)

    {

    Cout<<iter->first<<” ”<<iter->second<<end;

    }

    }

    第三种:用数组方式插入数据,下面举例说明

    #include <map>

    #include <string>

    #include <iostream>

    Using namespace std;

    Int main()

    {

    Map<int, string> mapStudent;

    mapStudent[1] = “student_one”;

    mapStudent[2] = “student_two”;

    mapStudent[3] = “student_three”;

    map<int, string>::iterator iter;

    for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++)

    {

    Cout<<iter->first<<” ”<<iter->second<<end;

    }

    }

    以上三种用法,虽然都可以实现数据的插入,但是它们是有区别的,当然了第一种和第二种在效果上是完成一样的,用insert函数插入数据,在数据的插入上涉及到集合的唯一性这个概念,即当map中有这个关键字时,insert操作是插入数据不了的,但是用数组方式就不同了,它可以覆盖以前该关键字对应的值,用程序说明

    mapStudent.insert(map<int, string>::value_type (1, “student_one”));

    mapStudent.insert(map<int, string>::value_type (1, “student_two”));

    上面这两条语句执行后,map中1这个关键字对应的值是 “student_one”,第二条语句并没有生效,那么这就涉及到我们怎么知道insert语句是否插入成功的问题了,可以用pair来获得是否插入成功,程序如下

    Pair<map<int, string>::iterator, bool> Insert_Pair;

    Insert_Pair = mapStudent.insert(map<int, string>::value_type (1, “student_one”));

    我们通过pair的第二个变量来知道是否插入成功,它的第一个变量返回的是一个 map的迭代器,如果插入成功的话Insert_Pair.second应该是true的,否则为false。

    下面给出完成代码,演示插入成功与否问题

    #include <map>

    #include <string>

    #include <iostream>

    Using namespace std;

    Int main()

    {

    Map<int, string> mapStudent;

    Pair<map<int, string>::iterator, bool> Insert_Pair;

    Insert_Pair = mapStudent.insert(pair<int, string>(1, “student_one”));

    If(Insert_Pair.second == true)

    {

    Cout<<”Insert Successfully”<<endl;

    }

    Else

    {

    Cout<<”Insert Failure”<<endl;

    }

    Insert_Pair = mapStudent.insert(pair<int, string>(1, “student_two”));

    If(Insert_Pair.second == true)

    {

    Cout<<”Insert Successfully”<<endl;

    }

    Else

    {

    Cout<<”Insert Failure”<<endl;

    }

    map<int, string>::iterator iter;

    for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++)

    {

    Cout<<iter->first<<” ”<<iter->second<<end;

    }

    }

    大家可以用如下程序,看下用数组插入在数据覆盖上的效果

    #include <map>

    #include <string>

    #include <iostream>

    Using namespace std;

    Int main()

    {

    Map<int, string> mapStudent;

    mapStudent[1] = “student_one”;

    mapStudent[1] = “student_two”;

    mapStudent[2] = “student_three”;

    map<int, string>::iterator iter;

    for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++)

    {

    Cout<<iter->first<<” ”<<iter->second<<end;

    }

    }

    3.map的大小

    在往map里面插入了数据,我们怎么知道当前已经插入了多少数据呢,可以用 size函数,用法如下:

    Int nSize = mapStudent.size();

    4.数据的遍历

    这里也提供三种方法,对map进行遍历

    第一种:应用前向迭代器,上面举例程序中到处都是了,略过不表

    第二种:应用反相迭代器,下面举例说明,要体会效果,请自个动手运行程序

    #include <map>

    #include <string>

    #include <iostream>

    Using namespace std;

    Int main()

    {

    Map<int, string> mapStudent;

    mapStudent.insert(pair<int, string>(1, “student_one”));

    mapStudent.insert(pair<int, string>(2, “student_two”));

    mapStudent.insert(pair<int, string>(3, “student_three”));

    map<int, string>::reverse_iterator iter;

    for(iter = mapStudent.rbegin(); iter != mapStudent.rend(); iter++)

    {

    Cout<<iter->first<<” ”<<iter->second<<end;

    }

    }

    第三种:用数组方式,程序说明如下

    #include <map>

    #include <string>

    #include <iostream>

    Using namespace std;

    Int main()

    {

    Map<int, string> mapStudent;

    mapStudent.insert(pair<int, string>(1, “student_one”));

    mapStudent.insert(pair<int, string>(2, “student_two”));

    mapStudent.insert(pair<int, string>(3, “student_three”));

    int nSize = mapStudent.size()

    //此处有误,应该是 for(int nIndex = 1; nIndex <= nSize; nIndex++)


    //by rainfish

    for(int nIndex = 0; nIndex < nSize; nIndex++)

    {

    Cout<<mapStudent[nIndex]<<end;

    }

    }

    5.数据的查找(包括判定这个关键字是否在map中出现)

    在这里我们将体会,map在数据插入时保证有序的好处。

    要判定一个数据(关键字)是否在map中出现的方法比较多,这里标题虽然是数据的查找,在这里将穿插着大量的map基本用法。

    这里给出三种数据查找方法

    第一种:用count函数来判定关键字是否出现,其缺点是无法定位数据出现位置, 由于map的特性,一对一的映射关系,就决定了count函数的返回值只有两个,要么是0,要么是1,出现的情况,当然是返回1了

    第二种:用find函数来定位数据出现位置,它返回的一个迭代器,当数据出现时,它返回数据所在位置的迭代器,如果map中没有要查找的数据,它返回的迭代器等于end函数返回的迭代器,程序说明

    #include <map>

    #include <string>

    #include <iostream>

    Using namespace std;

    Int main()

    {

    Map<int, string> mapStudent;

    mapStudent.insert(pair<int, string>(1, “student_one”));

    mapStudent.insert(pair<int, string>(2, “student_two”));

    mapStudent.insert(pair<int, string>(3, “student_three”));

    map<int, string>::iterator iter;

    iter = mapStudent.find(1);

    if(iter != mapStudent.end())

    {

    Cout<<”Find, the value is ”<<iter->second<<endl;

    }

    Else

    {

    Cout<<”Do not Find”<<endl;

    }

    }

    第三种:这个方法用来判定数据是否出现,是显得笨了点,但是,我打算在这里讲解

    Lower_bound函数用法,这个函数用来返回要查找关键字的下界(是一个迭代器)

    Upper_bound函数用法,这个函数用来返回要查找关键字的上界(是一个迭代器)

    例如:map中已经插入了1,2,3,4的话,如果lower_bound(2) 的话,返回的2,而upper-bound(2)的话,返回的就是3

    Equal_range函数返回一个pair,pair里面第一个变量是 Lower_bound返回的迭代器,pair里面第二个迭代器是Upper_bound返回的迭代器,如果这两个迭代器相等的话,则说明map中不出现这个关键字,程序说明

    #include <map>

    #include <string>

    #include <iostream>

    Using namespace std;

    Int main()

    {

    Map<int, string> mapStudent;

    mapStudent[1] = “student_one”;

    mapStudent[3] = “student_three”;

    mapStudent[5] = “student_five”;

    map<int, string>::iterator iter;

    iter = mapStudent.lower_bound(2);

    {

    //返回的是下界 3的迭代器

    Cout<<iter->second<<endl;

    }

    iter = mapStudent.lower_bound(3);

    {

    //返回的是下界 3的迭代器

    Cout<<iter->second<<endl;

    }

    iter = mapStudent.upper_bound(2);

    {

    //返回的是上界 3的迭代器

    Cout<<iter->second<<endl;

    }

    iter = mapStudent.upper_bound(3);

    {

    //返回的是上界 5的迭代器

    Cout<<iter->second<<endl;

    }

    Pair<map<int, string>::iterator, map<int, string>::iterator> mapPair;

    mapPair = mapStudent.equal_range(2);

    if(mapPair.first == mapPair.second)
    {

    cout<<”Do not Find”<<endl;

    }

    Else

    {

    Cout<<”Find”<<endl;
    }

    mapPair = mapStudent.equal_range(3);

    if(mapPair.first == mapPair.second)
    {

    cout<<”Do not Find”<<endl;

    }

    Else

    {

    Cout<<”Find”<<endl;
    }

    }


    6.数据的清空与判空

    清空map中的数据可以用clear()函数,判定map中是否有数据可以用empty()函数,它返回true则说明是空map

    7.数据的删除

    这里要用到erase函数,它有三个重载了的函数,下面在例子中详细说明它们的用法

    #include <map>

    #include <string>

    #include <iostream>

    Using namespace std;

    Int main()

    {

    Map<int, string> mapStudent;

    mapStudent.insert(pair<int, string>(1, “student_one”));

    mapStudent.insert(pair<int, string>(2, “student_two”));

    mapStudent.insert(pair<int, string>(3, “student_three”));

    //如果你要演示输出效果,请选择以下的一种,你看到的效果会比较好

    //如果要删除1,用迭代器删除

    map<int, string>::iterator iter;

    iter = mapStudent.find(1);

    mapStudent.erase(iter);

    //如果要删除1,用关键字删除

    Int n = mapStudent.erase(1);//如果删除了会返回1,否则返回0

    //用迭代器,成片的删除

    //一下代码把整个map清空

    mapStudent.earse(mapStudent.begin(), mapStudent.end());

    //成片删除要注意的是,也是STL的特性,删除区间是一个前闭后开的集合

    //自个加上遍历代码,打印输出吧

    }

    8. 其他一些函数用法

    这里有swap,key_comp,value_comp,get_allocator等函数,感觉到这些函数在编程用的不是很多,略过不表,有兴趣的话可以自个研究

    9. 排序

    这里要讲的是一点比较高深的用法了,排序问题,STL中默认是采用小于号来排序的,以上代码在排序上是不存在任何问题的,因为上面的关键字是int型,它本身支持小于号运算,在一些特殊情况,比如关键字是一个结构体,涉及到排序就会出现问题,因为它没有小于号操作,insert等函数在编译的时候过不去,下面给出两个方法解决这个问题

    第一种:小于号重载,程序举例

    #include <map>

    #include <string>

    Using namespace std;

    Typedef struct tagStudentInfo

    {

    Int nID;

    String strName;

    }StudentInfo, *PStudentInfo; //学生信息

    Int main()

    {

    int nSize;

    //用学生信息映射分数

    map<StudentInfo, int>mapStudent;

    map<StudentInfo, int>::iterator iter;

    StudentInfo studentInfo;

    studentInfo.nID = 1;

    studentInfo.strName = “student_one”;

    mapStudent.insert(pair<StudentInfo, int>(studentInfo, 90));

    studentInfo.nID = 2;

    studentInfo.strName = “student_two”;

    mapStudent.insert(pair<StudentInfo, int>(studentInfo, 80));

    for (iter=mapStudent.begin(); iter!=mapStudent.end(); iter++)

    cout<<iter->first.nID<<endl<<iter->first.strName<<endl<<iter->second<<endl;

    }

    以上程序是无法编译通过的,只要重载小于号,就OK了,如下:

    Typedef struct tagStudentInfo

    {

    Int nID;

    String strName;

    Bool operator < (tagStudentInfo const& _A) const

    {

    //这个函数指定排序策略,按nID排序,如果nID相等的话,按strName排序

    If(nID < _A.nID) return true;

    If(nID == _A.nID) return strName.compare(_A.strName) < 0;

    Return false;

    }

    }StudentInfo, *PStudentInfo; //学生信息

    第二种:仿函数的应用,这个时候结构体中没有直接的小于号重载,程序说明

    #include <map>

    #include <string>

    Using namespace std;

    Typedef struct tagStudentInfo

    {

    Int nID;

    String strName;

    }StudentInfo, *PStudentInfo; //学生信息

    Classs sort

    {

    Public:

    Bool operator() (StudentInfo const &_A, StudentInfo const &_B) const

    {

    If(_A.nID < _B.nID) return true;

    If(_A.nID == _B.nID) return _A.strName.compare(_B.strName) < 0;

    Return false;

    }

    };

    Int main()

    {

    //用学生信息映射分数

    Map<StudentInfo, int, sort>mapStudent;

    StudentInfo studentInfo;

    studentInfo.nID = 1;

    studentInfo.strName = “student_one”;

    mapStudent.insert(pair<StudentInfo, int>(studentInfo, 90));

    studentInfo.nID = 2;

    studentInfo.strName = “student_two”;

    mapStudent.insert(pair<StudentInfo, int>(studentInfo, 80));

    }

    10.另外

    由于STL是一个统一的整体,map的很多用法都和STL中其它的东西结合在一起,比如在排序上,这里默认用的是小于号,即less<>,如果要从大到小排序呢,这里涉及到的东西很多,在此无法一一加以说明。

    还要说明的是,map中由于它内部有序,由红黑树保证,因此很多函数执行的时间复杂度都是log2N的,如果用map函数可以实现的功能,而STL Algorithm也可以完成该功能,建议用map自带函数,效率高一些。

    下面说下,map在空间上的特性,否则,估计你用起来会有时候表现的比较郁闷,由于map的每个数据对应红黑树上的一个节点,这个节点在不保存你的数据时,是占用16个字节的,一个父节点指针,左右孩子指针,还有一个枚举值(标示红黑的,相当于平衡二叉树中的平衡因子),我想大家应该知道,这些地方很费内存了吧,不说了……

    STL之map【论坛收集版】

    在STL的头文件<map>中定义了模板类map和multimap,用有序二叉树来存贮类型为pair<const Key, T>的元素对序列。序列中的元素以const Key部分作为标识,map中所有元素的Key值都必须是唯一的,multimap则允许有重复的Key值。
    可以将map看作是由Key标识元素的元素集合,这类容器也被称为“关联容器”,可以通过一个Key值来快速确定一个元素,因此非常适合于需要按照Key 值查找元素的容器。
    map模板类需要四个模板参数,第一个是键值类型,第二个是元素类型,第三个是比较算子,第四个是分配器类型。其中键值类型和元素类型是必要的。
    map的基本操作有:
    1、定义map对象,例如:
    程序执行的输出结果为:

    map<string, int> m;

    2、向map中插入元素对,有多种方法,例如:

    m[key] = value;
    [key]操作是map很有特色的操作,如果在map中存在键值为key的元素对,则返回该元素对的值域部分,否则将会创建一个键值为key的元素对,值域为默认值。所以可以用该操作向map中插入元素对或修改已经存在的元素对的值域部分。
    m.insert( make_pair(key, value) );
    也可以直接调用insert方法插入元素对,insert操作会返回一个pair,当map中没有与key相匹配的键值时,其first是指向插入元素对的迭代器,其second为true;若map中已经存在与key相等的键值时,其first是指向该元素对的迭代器,second为false。

    3、查找元素对,例如:

    int i = m[key];
    要注意的是,当与该键值相匹配的元素对不存在时,会创建键值为key的元素对。
    map<string, int>::iterator it = m.find(key);
    如果map中存在与key相匹配的键值时,find操作将返回指向该元素对的迭代器,否则,返回的迭代器等于map的end()(参见vector中提到的begin和end操作)。

    4、删除元素对,例如:

    m.erase(key);
    删除与指定key键值相匹配的元素对,并返回被删除的元素的个数。
    m.erase(it);
    删除由迭代器it所指定的元素对,并返回指向下一个元素对的迭代器。

    看一段简单的示例代码:
    [size=-1]

    #include<map>
    #include<iostream>

    using namespace std;

    typedef map<int, string, less<int> > M_TYPE;
    typedef M_TYPE::iterator M_IT;
    typedef M_TYPE::const_iterator M_CIT;

    int main()
    {
    M_TYPE MyTestMap;

    MyTestMap[3] = "No.3";
    MyTestMap[5] = "No.5";
    MyTestMap[1] = "No.1";
    MyTestMap[2] = "No.2";
    MyTestMap[4] = "No.4";

    M_IT it_stop = MyTestMap.find(2);

    cout << "MyTestMap[2] = " << it_stop->second << endl;
    it_stop->second = "No.2 After modification";
    cout << "MyTestMap[2] = " << it_stop->second << endl;

    cout << "Map contents : " << endl;
    for(M_CIT it = MyTestMap.begin(); it != MyTestMap.end(); it++)
    {
    cout << it->second << endl;
    }

    return 0;
    }

    [size=-1]MyTestMap[2] = No.2
    MyTestMap[2] = No.2 After modification
    Map contents :
    No.1
    No.2 After modification
    No.3
    No.4
    No.5

    再看一段简单的示例代码:

    #include <iostream>
    #include <map>
    using namespace std;
    main()
    {
    map<string, int> m;
    m["one"] = 1;
    m["two"] = 2;
    // 几种不同的insert调用方法
    m.insert(make_pair("three", 3));
    m.insert(map<string, int>::value_type("four", 4));
    m.insert(pair<string, int>("five", 5));

    string key;
    while (cin>>key)
    {
    map<string, int>::iterator it = m.find(key);
    if (it==m.end())
    {
    cout << "No such key!" << endl;
    }
    else
    {
    cout << key << " is " << it->second << endl;
    cout << "Erased " << m.erase(key) << endl;
    }
    }
    return 1;
    }
  • 相关阅读:
    获取项目中.txt 文件的内容
    jdbc 连接各种数据库
    修改Eclipse中项目在Apache Tomcat中的部署路径
    java学习之继承之子父类中变量的特点
    java学习之继承、多态
    java学习之单例模式(饿汉式与懒汉式)
    java学习之对象初始化过程
    java学习之静态块、显示初始化块、构造函数、this在构造函数中的调用,区别联系与调用顺序
    java学习之数组的两种常见错误
    java学习之堆与栈的区别
  • 原文地址:https://www.cnblogs.com/hgy413/p/3693699.html
Copyright © 2011-2022 走看看