给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
图1
图2
输入格式:
输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。
输出格式:
如果两棵树是同构的,输出“Yes”,否则输出“No”。
输入样例1(对应图1):
8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -
输出样例1:
Yes
输入样例2(对应图2):
8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4
输出样例2:
No
#include<iostream>
#define maxtree 10
using namespace std;
typedef struct TreeNode
{
char data;
int left;
int right;
}BiTree;
BiTree B1[maxtree], B2[maxtree];
int BuildTree(BiTree B[],int N1);
int isomorphic(int a, int b);
int main(void)
{
int root1, root2;
int state;
int N1, N2;
cin >> N1;
root1 = BuildTree(B1,N1);
//cout << root1<<endl;
cin >> N2;
root2 = BuildTree(B2,N2);
//cout << root2<<endl;
if (N1 > 0 && N2 > 0 && N1 == N2)
{
state = isomorphic(root1, root2);
}
if (N1 ==0 && N2 == 0)
{
state = 1;
}
else if (N1 != N2)
{
state = 0;
}
if (state == 1)
{
cout << "Yes";
}
else
{
cout << "No";
}
return 0;
}
int BuildTree(BiTree B[],int N)
{
char left, right;
int check[maxtree] = { 0 };
for (int i = 0; i < N; ++i)
{
cin >> B[i].data >> left >> right;
if (left != '-')
{
B[i].left = left - '0';
check[B[i].left] = 1;
}
else
{
B[i].left = -1;
}
if (right != '-')
{
B[i].right = right - '0';
check[B[i].right] = 1;
}
else
{
B[i].right = -1;
}
}
//for (int i = 0; i < N; ++i)
//{
// cout << B[i].data;
//}
//cout << endl;
for (int i = 0; i < N; ++i)
{
if (check[i]==0)
{
return i;
}
}
}
int isomorphic(int a, int b)
{
if (B1[a].data !=B2[b].data)
{
return 0;//根结点不一样,不同构;
}
else
{
if (B1[a].left == -1 && B1[a].right == -1) //B1左右孩子都没有
{
//if (B2[b].left == -1 && B2[b].right == -1)
//{
// return 1;
//}
if (B2[b].left != -1 || B2[b].right != -1)
{
return 0;
}
}
if (B1[a].left != -1 && B1[a].right == -1) //B1有左孩子 没有右孩子
{
if ((B2[b].left == -1 && B2[b].right == -1) || (B2[b].left != -1 && B2[b].right != -1))
{
return 0;
}
if (B2[b].left != -1 && B2[b].right == -1)
{
if (B1[B1[a].left].data != B2[B2[a].left].data)
{
return 0;
}
else
{
isomorphic(B1[a].left, B2[b].left);
}
}
if (B2[b].left == -1 && B2[b].right != -1)
{
if (B1[B1[a].left].data != B2[B2[b].right].data)
{
return 0;
}
else
{
B2[b].left = B2[b].right;
B2[b].right = -1;
isomorphic(B1[a].left, B2[b].left);
}
}
}
if (B1[a].left == -1 && B1[a].right != -1)//B1没有左孩子 有右孩子
{
if ((B2[b].left == -1 && B2[b].right == -1) || (B2[b].left != -1 && B2[b].right != -1))
{
return 0;
}
if (B2[b].left != -1 && B2[b].right == -1)
{
if (B1[B1[a].right].data != B2[B2[b].left].data)
{
return 0;
}
else
{
B2[b].right = B2[b].left;
B2[b].left = -1;
isomorphic(B1[a].right, B2[b].right);
}
}
if (B2[b].left == -1 && B2[b].right != -1)
{
if (B1[B1[a].right].data != B2[B2[b].right].data)
{
return 0;
}
else
{
isomorphic(B1[a].right, B2[b].right);
}
}
}
if (B1[a].left != -1 && B1[a].right != -1)//B1有左孩子 有右孩子
{
if (B2[b].left == -1 || B2[b].right == -1)
{
return 0;
}
else
{
if ((B1[B1[a].left].data == B2[B2[b].left].data) && (B1[B1[a].right].data == B2[B2[b].right].data))
{
isomorphic(B1[a].left, B2[b].left);
isomorphic(B1[a].right, B2[b].right);
}
if ((B1[B1[a].left].data == B2[B2[b].right].data) && (B1[B1[a].right].data == B2[B2[b].left].data))
{
int temp;
temp = B2[b].right;
B2[b].right = B2[b].left;
B2[b].left = temp;
isomorphic(B1[a].left, B2[b].left);
isomorphic(B1[a].right, B2[b].right);
}
else
{
return 0;
}
}
}
}
return 1;
}