zoukankan      html  css  js  c++  java
  • python 线程及线程池

    一、多线程

    import threading
    from time import ctime,sleep
    
    
    def music(func):
        for i in range(2):
            print("I was listening to %s. %s" %(func,ctime()))
            sleep(1)
    
    def move(func):
        for i in range(2):
            print("I was at the %s! %s" %(func,ctime()))
            sleep(5)
    
    threads = []
    t1 = threading.Thread(target=music,args=(u'爱情买卖',))
    threads.append(t1)
    t2 = threading.Thread(target=move,args=(u'阿凡达',))
    threads.append(t2)
    
    if __name__ == '__main__':
        for t in threads:
            t.setDaemon(True)
            t.start()
        
        t.join()
    
        print("all over %s" %ctime())

    二、线程池(自实现)

    '''
    线程池的概念就是我们将1000件活,原本由1000个人来做,
    现在只分配5个人来做,这5个人就是线程池数,
    并且他们处与一直运行状态,除非主程序结束,否则,将不会结束。
    '''
    
    from queue import Queue
    from threading import Thread
    import random
    import time
    
    def person(i,q):
        while True:  #这个人一直处与可以接活干的状态
            q.get()
            print("Thread",i,"is doing the job")
            time.sleep(random.randint(1,5))#每个人干活的时间不一样,自然就会导致每个人分配的件数不同(这里是干活的地方)
            q.task_done()   #接到的活做完了,向上汇报
    
    q = Queue()
    
    #分配1000件活
    for x in range(100):
        q.put(x)
    
    #叫了5个人去干活    
    for i in range(5):
        worker=Thread(target=person, args=(i,q))
        worker.setDaemon(True)
        worker.start()
    
    q.join()  #这5个人把1000件活都做完后,结束.

    三、线程池(库实现)

    看吧!只用4行代码就搞定了!其中三行还是固定写法。

    import requests 
    from multiprocessing.dummy import Pool as ThreadPool 
    
    urls = [
        'http://www.baidu.com',
        'http://www.163.com',
        'http://www.sina.cn',
        'http://www.live.com',
        'http://www.mozila.org',
        'http://www.sohu.com',
        'http://www.tudou.com',
        'http://www.qq.com',
        'http://www.taobao.com',
        'http://www.alibaba.com',
            ]
    
    # Make the Pool of workers
    pool = ThreadPool(4) 
    
    # 注意此处的 map 函数!!!!
    # Open the urls in their own threads
    # and return the results
    results = pool.map(requests.get, urls)
    
    #close the pool and wait for the work to finish 
    pool.close() 
    pool.join()

     

    from multiprocessing import Pool
    
    def f(x):
        return x*x
    
    
    with Pool(5) as p:
        print(p.map(f, [1, 2, 3]))

     

     

    四、如何更加高效(生产、消费者模式)

    比起经典的方式来说简单很多,效率高,易懂,而且没什么死锁的陷阱。

    from multiprocessing import Pool, Queue
    import redis
    import requests
    
    queue = Queue(20)
    
    def consumer():
        r = redis.Redis(host='127.0.0.1',port=6379,db=1)
        while True:
            k, url = r.blpop(['pool',])
            queue.put(url)
    
    def worker():
        while True:
            url = queue.get()
            print(requests.get(url).text)
    
    def process(ptype):
        try:
            if ptype:
                consumer()
            else:
                worker()
        except:
            pass
    
    pool = Pool(5)
    print pool.map(process, [1,0,0,0,0])
    pool.close()
    pool.join()
  • 相关阅读:
    Azure Messaging-ServiceBus Messaging消息队列技术系列6-消息回执
    Azure Messaging-ServiceBus Messaging消息队列技术系列7-消息事务
    Azure Messaging
    消息队列技术之基本概念
    Azure IoT 技术研究系列1
    Azure IoT 技术研究系列3
    Azure IoT 技术研究系列2
    Azure IoT 技术研究系列4
    memset()
    C++ GetComputerName()
  • 原文地址:https://www.cnblogs.com/hhh5460/p/5052878.html
Copyright © 2011-2022 走看看