zoukankan      html  css  js  c++  java
  • 灵活定义神经网络结构

    用numpy可以灵活定义神经网络结构,还可以应用numpy强大的矩阵运算功能!

    一、用法

    1). 定义一个三层神经网络:

    '''示例一'''
    nn = NeuralNetworks([3,4,2]) # 定义神经网络
    nn.fit(X,y) # 拟合
    print(nn.predict(X)) #预测

    说明:

      输入层节点数目:3

      隐藏层节点数目:4

      输出层节点数目:2

    2).定义一个五层神经网络:

    '''示例二'''
    nn = NeuralNetworks([3,5,7,4,2]) # 定义神经网络
    nn.fit(X,y) # 拟合
    print(nn.predict(X)) #预测

    说明:

      输入层节点数目:3

      隐藏层1节点数目:5

      隐藏层2节点数目:7

      隐藏层3节点数目:4

      输出层节点数目:2

    二、实现

    如下实现方式为本人(@hhh5460)原创。 要点: dtype=object

    import numpy as np
    
    class NeuralNetworks(object):
        ''''''
        def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4):
            '''搭建神经网络框架'''
            # 各层节点数目 (向量)
            self.n = np.array(n_layers) # 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]'
            self.size = self.n.size # 层的总数
                
            # 层 (向量)
            self.z = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然
            self.a = np.empty(self.size, dtype=object)
            self.data_a = np.empty(self.size, dtype=object)
            
            # 偏置 (向量)
            self.b = np.empty(self.size, dtype=object)
            self.delta_b = np.empty(self.size, dtype=object)
    
            # 权 (矩阵)
            self.w = np.empty(self.size, dtype=object)
            self.delta_w = np.empty(self.size, dtype=object)
            
            # 填充
            for i in range(self.size):
                self.a[i] = np.zeros(self.n[i])  # 全零
                self.z[i] = np.zeros(self.n[i])  # 全零
                self.data_a[i] = np.zeros(self.n[i])  # 全零
                if i < self.size - 1:
                    self.b[i] = np.ones(self.n[i+1])   # 全一
                    self.delta_b[i] = np.zeros(self.n[i+1])  # 全零
                    mu, sigma = 0, 0.1 # 均值、方差
                    self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1]))  # # 正态分布随机化
                    self.delta_w[i] = np.zeros((self.n[i], self.n[i+1]))  # 全零

    下面完整代码是我学习斯坦福机器学习教程,完全自己敲出来的:

    import numpy as np
    '''
    参考:http://ufldl.stanford.edu/wiki/index.php/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C
    '''
    
    
    
    class NeuralNetworks(object):
        ''''''
        def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4):
            '''搭建神经网络框架'''
            self.n_iter = n_iter # 迭代次数
            self.error = error # 允许最大误差
            self.alpha = alpha # 学习速率
            self.lamda = lamda # 衰减因子 # 此处故意拼写错误!
            
            
            if n_layers is None:
                raise '各层的节点数目必须设置!'
            elif not isinstance(n_layers, list):
                raise 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]'
            # 节点数目 (向量)
            self.n = np.array(n_layers)
            self.size = self.n.size # 层的总数
                
            # 层 (向量)
            self.a = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然
            self.z = np.empty(self.size, dtype=object)
            
            # 偏置 (向量)
            self.b = np.empty(self.size, dtype=object)
            self.delta_b = np.empty(self.size, dtype=object)
    
            # 权 (矩阵)
            self.w = np.empty(self.size, dtype=object)
            self.delta_w = np.empty(self.size, dtype=object)
            
            # 残差 (向量)
            self.data_a = np.empty(self.size, dtype=object)
            
            # 填充
            for i in range(self.size):
                self.a[i] = np.zeros(self.n[i])  # 全零
                self.z[i] = np.zeros(self.n[i])  # 全零
                self.data_a[i] = np.zeros(self.n[i])  # 全零
                if i < self.size - 1:
                    self.b[i] = np.ones(self.n[i+1])   # 全一
                    self.delta_b[i] = np.zeros(self.n[i+1])  # 全零
                    mu, sigma = 0, 0.1 # 均值、方差
                    self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1]))  # # 正态分布随机化
                    self.delta_w[i] = np.zeros((self.n[i], self.n[i+1]))  # 全零
    
            # 激活函数
            self.active_functions = {
                'sigmoid': self.sigmoid,
                'tanh': self.tanh,
                'radb': self.radb,
                'line': self.line,
            }
            
            # 激活函数的导函数
            self.derivative_functions = {
                'sigmoid': self.sigmoid_d,
                'tanh': self.tanh_d,
                'radb': self.radb_d,
                'line': self.line_d,
            }
            
            if active_type is None:
                self.active_type = ['sigmoid'] * (self.size - 1) # 默认激活函数类型
            else:
                self.active_type = active_type
                
        def sigmoid(self, z):
            if np.max(z) > 600:
                z[z.argmax()] = 600
            return 1.0 / (1.0 + np.exp(-z))
                
        def tanh(self, z):
            return (np.exp(z) - np.exp(-z)) / (np.exp(z) + np.exp(-z))
                
        def radb(self, z):
            return np.exp(-z * z)
                
        def line(self, z):
            return z
                
        def sigmoid_d(self, z):
            return z * (1.0 - z)
                
        def tanh_d(self, z):
            return 1.0 - z * z
                
        def radb_d(self, z):
            return -2.0 * z * np.exp(-z * z)
                
        def line_d(self, z):
            return np.ones(z.size) # 全一
            
        def forward(self, x):
            '''正向传播(在线)''' 
            # 用样本 x 走一遍,刷新所有 z, a
            self.a[0] = x
            for i in range(self.size - 1):
                self.z[i+1] = np.dot(self.a[i], self.w[i]) + self.b[i] 
                self.a[i+1] = self.active_functions[self.active_type[i]](self.z[i+1]) # 加了激活函数
    
        def err(self, X, Y):
            '''误差'''
            last = self.size-1
            err = 0.0
            for x, y in zip(X, Y):
                self.forward(x)
                err += 0.5 * np.sum((self.a[last] - y)**2)
            err /= X.shape[0]
            err += sum([np.sum(w) for w in self.w[:last]**2])
            return err
        
        def backward(self, y):
            '''反向传播(在线)'''
            last = self.size - 1
            # 用样本 y 走一遍,刷新所有delta_w, delta_b
            self.data_a[last] = -(y - self.a[last]) * self.derivative_functions[self.active_type[last-1]](self.z[last]) # 加了激活函数的导函数
            for i in range(last-1, 1, -1):
                self.data_a[i] = np.dot(self.w[i], self.data_a[i+1]) * self.derivative_functions[self.active_type[i-1]](self.z[i]) # 加了激活函数的导函数
                # 计算偏导
                p_w = np.outer(self.a[i], self.data_a[i+1]) # 外积!感谢 numpy 的强大!
                p_b = self.data_a[i+1]
                # 更新 delta_w, delta_w
                self.delta_w[i] = self.delta_w[i] + p_w
                self.delta_b[i] = self.delta_b[i] + p_b
            
        def update(self, n_samples):
            '''更新权重参数'''
            last = self.size - 1
            for i in range(last):
                self.w[i] -= self.alpha * ((1/n_samples) * self.delta_w[i] + self.lamda * self.w[i])
                self.b[i] -= self.alpha * ((1/n_samples) * self.delta_b[i])
                
        def fit(self, X, Y):
            '''拟合'''
            for i in range(self.n_iter):
                # 用所有样本,依次
                for x, y in zip(X, Y):
                    self.forward(x)  # 前向,更新 a, z;
                    self.backward(y) # 后向,更新 delta_w, delta_b
                    
                # 然后,更新 w, b
                self.update(len(X))
                
                # 计算误差
                err = self.err(X, Y)
                if err < self.error:
                    break
    
                # 整千次显示误差(否则太无聊!)
                if i % 1000 == 0:
                    print('iter: {}, error: {}'.format(i, err))
    
        def predict(self, X):
            '''预测'''
            last = self.size - 1
            res = []
            for x in X:
                self.forward(x)
                res.append(self.a[last])
            return np.array(res)
            
    
            
    if __name__ == '__main__':
        nn = NeuralNetworks([2,3,4,3,1], n_iter=5000, alpha=0.4, lamda=0.3, error=0.06) # 定义神经网络
    
        X = np.array([[0.,0.], # 准备数据
                      [0.,1.],
                      [1.,0.],
                      [1.,1.]])
        y = np.array([0,1,1,0])
        
        nn.fit(X,y)          # 拟合
        print(nn.predict(X)) # 预测
        
        
  • 相关阅读:
    基本数据类型与其包装类型
    String与常量池(JDK1.8)
    数据库知识归纳(面试向)
    HashMap、ConcurrentHashMap以及HashTable(面试向)
    Java多线程基础(面试向)
    Java的类加载
    Sql语句的一些事(二)
    RUBY惯用方法(转)
    Ruby中区分运行来源的方法(转)
    ruby安装devkit
  • 原文地址:https://www.cnblogs.com/hhh5460/p/5124132.html
Copyright © 2011-2022 走看看